

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

BIOLOGICAL TERRORISM PREPAREDNESS: EVALUATING
THE PERFORMANCE OF THE EARLY ABERRATION

REPORTING SYSTEM (EARS) SYNDROMIC SURVEILLANCE
ALGORITHMS

by

David A. Dunfee
Benjamin L. Hegler

June 2007

 Thesis Advisor: Ronald D. Fricker, Jr.
 Second Reader: David H. Olwell

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Biological Terrorism Preparedness: Evaluating the
Performance of the Early Aberration Reporting System (EARS) Syndromic

Surveillance Algorithms

6. AUTHOR(S) David Dunfee, Benjamin Hegler

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
 A

13. ABSTRACT (maximum 200 words)
After the terrorist attacks of September 11, 2001, questions developed over how quickly the country could

respond if a bioterrorism attack was to occur. “Syndromic surveillance” systems are a relatively new concept that is
being implemented and used by public health practitioners to attempt to detect a bioterrorism attack earlier than
would be possible using conventional biosurveillance methods. The idea behind using syndromic surveillance is to
detect a bioterrorist attack by monitoring potential leading indicators of an outbreak such as absenteeism from work
or school, over-the-counter drug sales, or emergency room counts. The Center for Disease Control and Prevention’s
Early Aberration Reporting System (EARS) is one syndromic surveillance system that is currently in operation
around the United States.

This thesis compares the performance of three syndromic surveillance detection algorithms, entitled C1, C2,
and C3, that are implemented in EARS, versus the CUSUM applied to model-based prediction errors. The CUSUM
performed significantly better than the EARS’ methods across all of the scenarios evaluated. These scenarios
consisted of various combinations of large and small background disease incidence rates, seasonal cycles from large
to small (as well as no cycle), daily effects, and various levels of random daily variation. This results in the
recommendation to replace the C1, C2, and C3 methods in existing syndromic surveillance systems with an
appropriately implemented CUSUM method.

15. NUMBER OF
PAGES

145

14. SUBJECT TERMS Syndromic Surveillance, Biosurveillance, Bioterrorism, Public Health, Early
Event Detection, C1, C2, C3, Cumulative Sum (CUSUM)

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

BIOLOGICAL TERRORISM PREPAREDNESS: EVALUATING THE
PERFORMANCE OF THE EARLY ABERRATION REPORTING SYSTEM

(EARS) SYNDROMIC SURVEILLANCE ALGORITHMS

David A. Dunfee
Ensign, United States Navy

B.S., United States Naval Academy, 2006

Benjamin L. Hegler
Ensign, United States Navy

B.S., Auburn University, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN APPLIED SCIENCE (OPERATIONS RESEARCH)

from the

NAVAL POSTGRADUATE SCHOOL
June 2007

Authors: David A. Dunfee

 Benjamin L. Hegler

Approved by: Dr. Ronald D. Fricker, Jr.
 Thesis Advisor

 Dr. David H. Olwell
 Second Reader

 Dr. James N. Eagle
 Chairman, Department of Operations Research

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

After the terrorist attacks of September 11, 2001, questions developed over how

quickly the country could respond if a bioterrorism attack was to occur. “Syndromic

surveillance” systems are a relatively new concept that is being implemented and used by

public health practitioners to attempt to detect a bioterrorism attack earlier than would be

possible using conventional biosurveillance methods. The idea behind using syndromic

surveillance is to detect a bioterrorist attack by monitoring potential leading indicators of

an outbreak such as absenteeism from work or school, over-the-counter drug sales, or

emergency room counts. The Center for Disease Control and Prevention’s Early

Aberration Reporting System (EARS) is one syndromic surveillance system that is

currently in operation around the United States.

This thesis compares the performance of three syndromic surveillance detection

algorithms, entitled C1, C2, and C3, that are implemented in EARS, versus the CUSUM

applied to model-based prediction errors. The CUSUM performed significantly better

than the EARS’ methods across all of the scenarios evaluated. These scenarios consisted

of various combinations of large and small background disease incidence rates, seasonal

cycles from large to small (as well as no cycle), daily effects, and various levels of

random daily variation. This results in the recommendation to replace the C1, C2, and

C3 methods in existing syndromic surveillance systems with an appropriately

implemented CUSUM method.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research may

not have been exercised for all cases of interest. While every effort has been made, within

the time available, to ensure that the programs are free of computational and logic errors,

they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1

1. Bioterrorism and Syndromic Surveillance ..1
2. Relevant Previous Syndromic Surveillance Research3

B. COURSE OF RESEARCH ...4
1. Research Objectives...4
2. Assumptions..5

C. THESIS OUTLINE..6

II. SIMULATING SYNDROMIC SURVEILLANCE DATA AND
SCENARIOS ..7
A. DATA GENERATION ASSUMPTIONS AND SIMULATION7

1. Syndromic Surveillance Data..7
2. Generating Synthetic Syndromic Surveillance Data7
3. Discussion of Assumptions ..8

a. Seasonal Cycles ...8
b. Day-of-the-Week ...9
c. Holiday Effects..10
d. Long Term Trends ..10
e. Daily Random Variability ...11
f. Whole Number Counts ...11

B. SIMULATION SCENARIOS...12
1. Case and Scenario Definition..12
2. Large and Small Count Parameters...12
3. Imposing Outbreaks ..13

III. DESCRIPTION OF THE DETECTION ALGORITHMS....................................15
A. CURRENT UNIVARIATE METHODS ...15

1. C1, C2, and C3 Methods..15
2. The CUSUM Method...16

B. ADAPTIVE REGRESSION ...17

IV. COMPARISON METHODOLOGY..21
A. METRICS...21

1. Average Time to First Signal Given a True Signal.........................21
2. Fraction Missed..21

B. CHOOSING INPUT AND THRESHOLD VALUES.................................22
1. Optimizing n for the Adaptive Regression Model22
2. Choosing k...25
3. Choosing h ..29

V. RESULTS ...31
A. LARGE COUNT BASELINE MEAN ...31
B. SMALL COUNT BASELINE MEAN ...35

 x

C. DAY OF THE WEEK EFFECTS ..38

VI. CONCLUSIONS AND RECOMMENDATIONS...43

LIST OF REFERENCES..45

APPENDIX A: “OPTIMAL” n PLOTS ...47

APPENDIX B: COMPARION RESULTS PLOTS...53

APPENDIX C: MATLAB SIMULATION CODE ..87

INITIAL DISTRIBUTION LIST ...123

 xi

LIST OF FIGURES

Figure 1. Predictive performance of the linear and quadratic models for baseline 90,
amplitude 80, and standard deviation 10. ..24

Figure 2. “Sigma multiple” for various n values...28
Figure 3. Performance of the procedures for case 2 (large count), scenarios 4-6.34
Figure 4. Performance of the procedures for case 7 (small count) for scenarios 19-

20..36
Figure 5. Performance of the procedures for case 7 (small count) for scenarios 21-

22..37
Figure 6. Performance of the procedures for case 2 (large count) for scenarios 31-33

with day-of-the-week effects included...39
Figure 7. Performance of the procedures for case 7 (small count) for scenarios 27-28

with day-of-the-week effects included...40
Figure 8. Performance of the procedures for case 7 (small count) for scenarios 29-30

with day-of-the-week effects included...41

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

LIST OF TABLES

Table 1. Parameter values for β = 90 (large count). ..13
Table 2. Parameter values for β = 0 (small count)...13
Table 3. “Optimal” n values for linear and quadratic adaptive regression models,

with no day-of-the-week effect. ...25
Table 4. “Optimal” n values for linear and quadratic adaptive regression models,

with the day-of-the-week effect included. ...25
Table 5. Summary of input parameters, outbreak parameters, h, and n values.30

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

 xv

ACKNOWLEDGMENTS

Andy Dunfee:

First, I would like to thank Professor Fricker for his guidance and mentorship

during the entire thesis process. You were a joy to work with and made completing a

thesis an overall enjoyable experience. Thanks for all the time and work you put into

assisting Ben and I. I would also like to thank my partner, Ben. You were a pleasure to

work and a good friend during the course of this past year. Finally, I would like to thank

my family and friends for being so supportive of me during my time here at Naval

Postgraduate School.

Benjamin Hegler:

First, a great big “Thank you!” to Andy Dunfee for his hard work, consistency,

and friendship throughout the year. It was a pleasure to work with you, Andy. Also, of

course, many thanks to Dr. Ronald Fricker for the devotion and foresight he displayed

toward Andy and I throughout the year with regard to our thesis research. Thanks for

keeping us on track, Dr. Fricker. It was a pleasure working with you.

Thanks also to my family for being there for me and supporting me in whatever I

do. You guys rock.

Lastly, I would like to thank the Operations Research department faculty at the

Naval Postgraduate School for their dedication to their students’ education and well-

being. I have learned much more than I realize this year. Thank you all.

 xvi

THIS PAGE INTENTIONALLY LEFT BLANK

 xvii

EXECUTIVE SUMMARY

 After the terrorist attacks of September 11, 2001, many questions arose over how

quickly the country could respond if a bioterrorism attack were to occur. Using

syndromic surveillance for early event detection of a bioterrorism attack and situational

awareness during the course of the attack is a relatively new concept that is becoming

used in the public health world. The idea behind using syndromic surveillance is to

detect a bioterrorist attack by monitoring potential leading indicators of an outbreak such

as absenteeism from work or school, over-the-counter drug sales, or the number of people

presenting at an emergency room that exhibit a specific chief complaint. Three such

syndromic surveillance algorithms which have been used by the Center for Disease

Control and Prevention’s (CDC) program entitled Early Aberration Reporting System

(EARS) are the C1, C2, and C3 methods.

Currently almost no published performance analysis comparisons between the

EARS methods and any other methods exist. This research evaluates the performance of

the EARS methods versus a cumulative sum (CUSUM) method applied to forecast errors

of an “adaptive regression with sliding baseline” model. The adaptive regression with

sliding baseline was used to predict the current day’s observation, and this prediction was

compared to the actual count. Counts that exceed the predictions are evidence of a

possible bioterrorist attack or a natural disease outbreak. Three adaptive regression

models were fit, each using a sliding baseline based on a different amount of historical

data: the previous eight weeks; the past seven days (corresponding to what is used in the

C1, C2, and C3 methods); and the “optimal” amount of historical data that minimizes the

forecast errors under each of the background disease incidence scenarios.

The methods were compared using synthetic syndromic surveillance data,

simulated in such a way as to exhibit the major characteristics of syndromic surveillance

data. Examples of these characteristics are: large and small baseline disease incidence;

small, large, and no seasonal cycles; day-of-the-week effects; and small and large daily

random variations. The large baseline disease incidence daily variation was generated by

a random normal distribution, and the small baseline disease incidence daily random

 xviii

variation was generated by a random lognormal distribution. Each daily observation

generated was rounded up to the nearest whole number in order to make it a realistic

count. The reason for using simulated data was to be able to compare the methods’

relative performance under known and controlled conditions.

The analysis was conducted on 10 cases that mimicked different types of

background disease incidence behavior. Six cases were examined using a large baseline

mean disease incidence of 90, which involved three seasonal cycles (none, small, large),

and two daily variations (small and large). Two cases were examined using a small

baseline disease incidence of 0, which involved two daily variations (small and large).

Finally, two cases were examined with day-of-the-week effects included: one large

baseline disease incidence and one small baseline disease incidence. Each algorithm (C1,

C2, C3, and the CUSUMs with the three sliding baselines) was evaluated for each case

for various sizes of disease outbreaks. An outbreak was defined as a linear increase up to

some day “X”, followed by an equal linear decrease back to the normal incidence rate.

Outbreak durations from three to fifteen days were evaluated. Three outbreak

magnitudes were evaluated for each large count case: small, medium, and large. Four

different outbreak sizes were evaluated for each small count case: small, medium, large,

and extra-large, with the outbreak magnitudes for each size differing between the cases

when daily variation was small and when it was large.

Two comparison metrics were used to analyze each algorithm’s performance

under each set of conditions. The first metric was the average time to first signal (ATFS)

given a true signal; the goal for this measurement was to measure how quickly each

method signaled an alarm, given that the method detected the outbreak within its

duration. In the conduct of the simulations, the signal threshold was first set such that the

procedures had equal ATFS under some background (non-outbreak) disease incidence

scenario. The second metric was the fraction of the outbreaks that were not detected

within their duration for each duration length (fraction missed). Both comparison metrics

were taken into account when evaluating the relative performance of the algorithms for

certain background disease incident patterns and various outbreak magnitudes and

durations.

 xix

A clear conclusion from this work is that the CUSUM with an eight week and

“optimal” sliding baseline performed significantly better in all the scenarios evaluated.

While the C1 and CUSUM with a seven day sliding baseline tended to have slightly

shorter ATFS given a true signal, this came at the expense of missing a much greater

number of outbreaks than the CUSUMs with either the “optimal” or 56 day sliding

baseline. This difference in performance is evident in all outbreak magnitudes but is

most evident with the larger magnitude outbreaks. The three EARS methods performed

similarly across all simulations, generally with only relatively small differences in

performance. Of the EARS methods, the C2 method had the lowest fraction missed on

the majority of the simulations, but the C1 was typically faster than the C2 and C3 for the

ATFS given a true signal. The C3 method’s performance varied, but it was typically

outperformed by the C1 in the ATFS given a true signal and the C2 in the fraction

missed.

Overall, the CUSUM methods, particularly with the eight week and “optimal”

sliding baselines, outperformed the EARS methods. Therefore, standard syndromic

surveillance systems using the EARS methods would benefit from replacing the EARS

methods with a CUSUM method based on adaptive regression forecast errors, setting the

CUSUM thresholds in a similar fashion as done in this research in order to minimize the

false alarm burden as much as possible.

 xx

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. INTRODUCTION

A. BACKGROUND

Syndromic surveillance has been defined as the ongoing,
systematic collection, analysis, interpretation, and application of real-time
(or near-real-time) indicators of diseases and outbreaks that allow for their
detection before public health authorities would otherwise note them. It
has also been defined as surveillance using health-related data that precede
diagnosis and signal a sufficient probability of a case or an outbreak to
warrant further public health response.

 Fricker (2007a)

1. Bioterrorism and Syndromic Surveillance

In our world today, the threat of bioterrorism is very real, and the potential to be

surprised by an attack is certainly a concern. As with any contagious disease outbreak,

earlier detection allows for easier containment and fewer infections as well as,

potentially, lives saved. Simply realizing that an attack or outbreak has occurred is a great

leap forward in knowing what steps need to be taken in the interest of public health and

safety. While a large-scale, fast-acting bioterrorism attack that sends hundreds of extra

patients with similar symptoms to an emergency room would not go unnoticed for long,

what if the attack were more subtle? What if the attack was slow to act and caused a very

gradual increase in the number of patients? Such a scenario might potentially go

unnoticed for weeks or longer. This is exactly the sort of scenario that syndromic

surveillance is intended to help with.

After the terrorist attacks on September 11, 2001, many questions arose

concerning how quickly the country could respond if a bioterrorism attack were to occur.

Using syndromic surveillance systems to detect a bioterrorist attack is a relatively new

concept that emphasizes timeliness. Essentially, syndromic surveillance uses emperical

methods to attempt to sniff out sudden but relatively small changes in some normal rate

of illness occurrence, hopefully leading to proper and timely diagnosis of a potentially

lethal situation that might otherwise go unnoticed for quite some time. Syndromic

 2

surveillance can monitor many indicators of an outbreak, such as absenteeism from work

or school, over-the-counter drug sales, or emergency room entries that exhibit a

respiratory complaint. Thus, one of the fundeamantal goals of syndromic surveillance is

to gain time during which the public health system can better respond:

The advantage of syndromic surveillance is the lead-time it
provides public health authorities to take more effective public health
actions. What syndromic surveillance allows is not necessarily earlier
diagnosis per se but the ability to mobilize public health investigation and
response capabilities before disease an out-break confirmation.

Sosin (2003)

Another goal is to help manage the response to an outbreak or an attack:

More recently, the purpose of syndromic surveillance has been
expanded to include using existing health data in real time to provide
immediate analysis and feedback to those charged with investigation and
follow-up of potential outbreaks. This broader focus on electronic
biosurveillance includes both early event detection and situational
awareness. Situational awareness is the real-time analysis and display of
health data to monitor the location, magnitude, and spread of an outbreak,
as well as the availability and application of public health and medical
resources to the outbreak.

Fricker (2007a).

Although the capabilities of syndromic surveillance are becoming better

understood as the result of on-going research, the current state of knowledge is limited on

its effectiveness when used to detect disease outbreaks and bioterrorism attacks. Sosin

(2003) analyzes the case for skillful investment using syndromic surveillance, and

Shmueli (2006) presents the statistical challenges and questions that still needed to be

answered in biosurveillance. Although some questions remain unanswered,

improvements and studies are being conducted, and many public health officials believe

that syndromic surveillance is a promising tool for detecting a disease outbreak or

bioterrorism attack in a timely and efficient manner. See Fricker (2007a), Fricker and

Rolka (2006), Stoto et al. (2006) and Fricker (2007b) for more detailed discussions.

 3

Currently, there are a number of syndromic surveillance systems that use the

EARS detection algorithms. These algorithms were initially developed for the EARS

syndromic surveillance system (www.bt.cdc.gov/surveillance/ears/) which was “designed

for monitoring for bioterrorism during large-scale events that often have little or no

baseline data” (Fricker, 2007a). These methods were then incorporated into the BioSense

system (www.cdc.gov/biosense). BioSense is a federally directed effort by the CDC that

currently uses the EARS’ C1 and C3 algorithms and the W2 algorithm (a variant of the

C2 algorithm):

Begun in 2003, BioSense is intended to be a United States-wide
electronic biosurveillance system that initially used Department of
Defense and Department of Veterans Affairs outpatient data along with
medical laboratory test results from a nationwide commercial laboratory.
In 2006, BioSense began incorporating data from civilian hospitals as
well. The primary objective of BioSense is to expedite event recognition
and response coordination among federal, state, and local public health
and healthcare organizations.

Fricker (2007a)

2. Relevant Previous Syndromic Surveillance Research

 The syndromic surveillance literature documents quite a number of efforts to

develop and measure the performance of various individual detection algorithms.

However, it contains very few comparisons between algorithms in order to assess the

relative strengths and weaknesses of the algorithms. It is as if everyone is trying to

develop a new hammer, but few are comparing among the hammers to determine which

are to be preferred. See, for example, Brillman (2005), Farrington et al. (1996), and Reis

et al. (2003).

Examples of past research that do compare between detection methods include

Fricker (2007b) and Stoto et al. (2006) who evaluated different methods’ performances in

the context of syndromic surveillance. In particular, they compared simultaneous

univariate CUSUMs against a multivariate CUSUM. The idea of their comparison was to

evaluate whether it would be more effective to use simultaneous individual CUSUMs

with each applied to a different data stream – say, each type of chief complaint at each

hospital – or a multivariate method that evaluates a series of data streams – say, all chief

 4

complaints at each hospital or one type of chief complaint across multiple hospitals. It

was found that under certain conditions the univariate CUSUMs outperformed the

multivariate CUSUM, but under other conditions the multivariate CUSUM outperformed

the univariate CUSUMs. Their findings provided researchers and practitioners with some

useful information about which method should be used in which situation.

Other relevant past research includes Zhu et al. (2005) who conducted an initial

evaluation of the EARS methods versus Shewhart “p-chart” and exponentially weighted

moving average (EWMA) methods. They concluded that the C2 method was best for

autocorrelated data. However, this is not surprising since they did not modify the

application of the Shewhart and EWMA methods to account for the autocorrelation.

 Currently, the EARS methods used for biosurveillance do not directly take into

account trends, day-of-the-week effects, or certain other systematic behavior. Burkom,

Murphy, and Shmueli (2006) discuss options to account for these trends in their paper

“Automated Time Series Forecasting for Biosurveillance.” They use regression and time

series methods to remove this behavior by subtracting forecasts from observations to

form residuals for algorithmic input. They describe and compare three forecast methods:

a nonadaptive loglinear regression model using a long historical baseline, an adaptive

regression model with a shorter, sliding baseline, and the Holt-Winters method for

generalized exponential smoothing.

Additional prior syndromic surveillance detection algorithm research is described

in Woodall (2006), Shmueli (2006), Fricker (2007a), and Fricker and Rolka (2006). Also

see the abstracts and papers posted online for the journal Advances in Disease

Surveillance (www.isdsjournal.org) and in the Morbidity and Mortality Weekly Report

(MMWR) published by the CDC (www.cdc.gov/mmwr/).

B. COURSE OF RESEARCH

1. Research Objectives

The objective of this research was to compare the performance of the C1, C2, and

C3 EARS methods to a CUSUM-based method specifically designed for the syndromic

 5

surveillance problem. As was previously mentioned, all three of the EARS methods do

not explicitly account for trends, day-of-the-week effects, or other systematic behavior.

The EARS methods are compared to a CUSUM applied to forecast errors of an “adaptive

regression” model as defined in Burkom et al. (2006). Three adaptive regression models

were fit, each with a different amount of historical data. They are: (1) the previous eight

weeks, as was done in Burkom; (2) the seven days of data corresponding to what is used

in the C1, C2, and C3 methods; and, (3) the optimal length of data that minimizes the

forecast errors under each of the background disease incidence scenarios. Comparisons

were made under a series of different scenarios, where each scenario was designed to

mimic certain behaviors in syndromic surveillance data.

2. Assumptions

The comparisons were based on simulated syndromic surveillance data, both

background disease incidence and outbreaks. This simulated data was, by design and of

necessity, somewhat idealized. Specifically, the simulated data was designed to exhibit

the major characteristics of syndromic surveillance data in order to compare and contrast

the relative performance of the various methods under these conditions.

The objective was to gain insight into how the major features of syndromic

surveillance data (e.g., large vs. small seasonal cycles, day-of-the-week effect vs. no

effect, etc.) affect the relative performance of the various methods. That is, for example,

the goal is to understand which method or methods work best in data with large seasonal

fluctuations with significant day-to-day variation compared to, say, data that has large

seasonal fluctuations but little day-to-day variation or small seasonal fluctuations but

large day-to-day variation.

In the simulated data, the background disease incidence was characterized in

terms of a mean disease incidence rate that varies according to a seasonal cycle and a

day-of-the-week effect. Individual daily counts were then generated as the sum of the

mean disease incidence, an outbreak when appropriate, and a random deviation from the

mean. This is discussed further in the next chapter.

 6

C. THESIS OUTLINE

The thesis is organized as follows. Chapter II describes how the synthetic

syndromic surveillance data used in this research was simulated. Chapter III describes

the various detection algorithms which were used in this research. Chapter IV describes

the methodology used to evaluate the relative performance of the various methods

studied, as well as a description of how various input and threshold values were chosen.

Chapter V summarizes the results of the simulations, focusing on the large count, small

count, and day-of-the-week effect results.

 7

II. SIMULATING SYNDROMIC SURVEILLANCE
DATA AND SCENARIOS

A. DATA GENERATION ASSUMPTIONS AND SIMULATION

1. Syndromic Surveillance Data

Syndromic surveillance data generally contain various trends and cycles. For

example, syndromes related to the flu frequently exhibit a cycle in which disease

incidence increases sometime in the fall or winter corresponding to the annual flu cycle.

Other types of syndromic surveillance data may exhibit other types of seasonal cycles.

Syndromic surveillance data also often exhibit day-of-the-week effects corresponding to

the fact that, for example, people tend to go to hospital emergency rooms differentially

depending on the day of the week. Similarly, over-the-counter medication sales vary in a

systematic way with day of the week (as well as holiday and seasonal cycles). For a

more detailed discussion and examples and plots of actual data, see Shmueli (2006),

Lotze, et al. (2006), and Burkom et al. (2006).

2. Generating Synthetic Syndromic Surveillance Data

In order to capture the main features of syndromic surveillance data, the

background disease incidence was characterized in terms of a mean disease incidence rate

with a systematic seasonal (sinusoidal) cycle and day-of-the-week variation. Individual

daily counts were then generated as the sum of these systematic effects and a random

deviation from the mean. Specifically, a daily observation Xi, was simulated as

()max 0, () , 1, 2,...,i i i iX Y iβ α δ β= + + + =⎡ ⎤⎢ ⎥ (1)

where:

• β is the baseline disease incidence;

 8

• α is the seasonal deviation from the baseline mean, calculated as

[]sin(2 / 365)i A iα π= , where A is the amplitude (which is the maximum

deviation from β) with i corresponding to October 1st;

• δ is the systematic deviation from the mean (day-of-the-week effect),

where 7i iδ δ += for all i ;

• ()iY β is the random noise around the systematic component

()i iβ α δ+ + with

o (large) ~ (0,)i LY Nβ σ and

o (small) ~ (,)i sY LNβ µ σ ;

and where •⎡ ⎤⎢ ⎥ is the ceiling function, which rounds the value up to the next largest

integer.

The simulated years were always 365 days long, but this is only relevant when

calculatingα . Extending this data generation method to account for leap years is an

unnecessary complication that was not considered in this work since it would not affect

the results or conclusions.

3. Discussion of Assumptions

a. Seasonal Cycles

In general, there is some semblance of an annual periodic cycle in

syndromic data over the course of a year or two. For example, the mean number of

hospital respiratory chief complaints is likely to be higher in the month of February

compared to the month of July. This is in part due to what is commonly known as the flu

season, beginning sometime in the late fall or winter and ending sometime in the late

winter or spring.

However, the rises and falls of this pattern occur at different times each

year and, while there is a general pattern, each flu season has a different duration,

 9

amplitude and start time. Hence, going back years in the data in an attempt to model the

seasonal cycle, if such data exists, is generally not useful for syndromic surveillance.

In spite of the fact that the annual pattern is typically unpredictable and

variable, for this work an artificial sinusoid was used in order to simulate the general rises

and falls in real data. Although the sinusoid is an idealized characterization of the natural

periodicity of disease incidence data, as will be demonstrated in more detail in the next

chapter, none of the methods evaluated are designed to, nor are they capable of,

exploiting this feature of the synthetic data. Simply put, the EARS methods only use

seven days of past data and so are incapable of modeling the sinusoid. Similarly, the

adaptive regression uses a linear model fit to 8-weeks or less of past data and thus is also

incapable of modeling the sinusoid. The result is that the perfect sinusoids of the

synthetic data are no more predictable for the methods being evaluated than the real, less

predictable seasonal variations.

b. Day-of-the-Week

Typically, there is a day-of-the-week effect in syndromic surveillance

data. For example, when looking at hospital chief complaint data, there is a systematic,

daily trend that appears in most data (c.f. Brillman, 2005, and Shmueli, 2006). This day-

of-the-week effect may differ depending on the location, time of year, or other factors.

Similarly, when looking at over-the-counter medication sales, the counts generally

exhibit a regular day-of-the-week effect. This work included a day-of-the-week effect by

including the previously mentioned parameter δ in the data generation model. The main

idea in this research was not that the day-of-the-week effect be accurately simulated, due

to the variable nature of this effect in real data. What was most important, however, was

to demonstrate the implications of including this effect in some of the simulations –

namely, that the effect can be included in the simulations, and the subsequently

“removed” by the regression.

For the simulations, the day-of-the-week effect δ is the systematic

deviation from the baseline (with annual periodic cycle – i.e., the sinusoid), where each

day of the week had a certain iδ value assigned to it. The iδ values were rather

 10

arbitrarily chosen and were defined in terms of σ, the standard deviation parameter of Y,

for both large and small count simulations as follows: δ = −0.5σ on Sunday; δ = 0.1σ

on Monday; δ = 0.2σ on Tuesday; δ = 0.3σ on Wednesday; δ = 0.4σ on Thursday; δ

= 0 on Friday; and δ = −0.3σ on Saturday. It should be noted that these values result in a

positive bias of 0.2σ, which essentially just increases the baseline for the scenarios which

included the day-of-the-week effect. This change did not affect the relative performance

of the methods.

The day-of-the-week effect was not included in the majority of the

simulations because it did not affect the results. Simply put, all the methods were

effective at accounting for and eliminating day-of-the-week effects. When reviewing

simulation results, the day-of-the-week effect can be assumed to be zero, except where

explicitly stated.

c. Holiday Effects

In addition to the day-of-the-week effect, there is also a holiday effect that

often appears in the data. For example, stores may be closed on certain holidays and

people go to hospitals in much fewer numbers. This is an issue in real data but will be left

to be addressed in later work; in the current work, the methods utilized can be naturally

extended to account for holiday effects.

d. Long Term Trends

The issue of long term trends also exists in hospital admittance data

where, over time, the number of people presenting gradually rises or falls, perhaps in

conjunction with changes in the surrounding popuation. Since the focus of this work is

on a sudden, relatively small shift in the mean, long term trends that span back many

months were not included in the work. Furthermore, methods that are effective at

modeling the seasonal sinusoid of the synthetic data will also be able to effectively model

a long term linear trend. Hence, including such a long term trend in the data generation

model would have been an unnecessary complication.

 11

e. Daily Random Variability

As with most processes, daily random variability occurs in syndromic

surveillance data. For example, if the mean number of chief complaints in a hospital

during the month of August over the last few years is fifty and, having chief complaints

between, say, forty and sixty would not be considered particularly strange.

This work included daily random variability by way of generating data

with random variability around the systematic component which represents the mean

disease incidence rate. In the large count scenarios the daily random variability was

normally distributed around the systematic mean component with a distribution mean of

zero and various standard deviations. The daily variation in the small counts was

modeled as a lognormal with a distributional mean and standard deviation.

The choice of normally distributed daily variation for the large counts was

based on the idea that large sums of individuals randomly arriving at a hospital

emergency room ought to be approximately normally distributed via the Central Limit

Theorem. For the small counts, the daily variability should be skewed to the right and

bounded by zero. The lognormal provided a convenient way to model this behavior.

f. Whole Number Counts

Although the method of data generation inherently produces non-integer

values, whole number counts were used in the data simulation. This was achieved by

using the “ceiling” function in MatLab, which rounds a non-integer value generated by

the data generation model up to the next largest integer. In addition, for some

combinations of parameters, it is possible for the term ()i i iYβ α δ β+ + + in Equation (1)

to generate negative numbers. Hence, the “max” function was used in the data generation

function to ensure all the synthetic observations were non-negative.

 12

B. SIMULATION SCENARIOS

1. Case and Scenario Definition

A “case” for the purposes of this work is defined as a certain baseline (β),

amplitude (A), mean (µ), and standard deviation (σ) combination. For each of these

cases, three and four different outbreaks were simulated for the large and small count

cases, respectively. A “scenario” is defined as a certain baseline, amplitude, mean,

standard deviation, and outbreak size combination.

2. Large and Small Count Parameters

Once again, the overall goal of this work was to compare the relative performance

of several methods for different disease incidence cases. Specifically, the two cases of

small and large baseline values, parameterized as β = 90 and β = 0, were studied. For

each of these, all possible combinations of those baselines with varying standard

deviation and mean values were created, as shown in Tables 1 and 2.

The values in Table 1 and Table 2 result in 1β x 3A x 2σ = 6 parameter

combinations (cases) for the large count and 1β x 1A x 1µ x 2σ = 2 parameter

combinations for the small count. It should be noted that there are three amplitude sizes

for the large counts, but only one for the small counts. Originally, there were three small

count amplitude sizes, but in running the simulations it became clear that the adaptive

regression methodology was very effective at removing the amplitude effect, so it was

decided that there was no need to vary amplitude for the small counts. This reduced the

total number of simulation scenarios to be run. This is discussed further in Chapter IV.

Day-of-the-week effects were also added to one large count case and one small

count case for a total of 10 parameter conditions. This, combined with three different

size outbreaks for the large counts and four different size outbreaks for the small counts,

resulted in 33 simulation scenarios, which were used to assess the relative performance of

the six methods (C1, C2, and C3 plus the CUSUM with three different sliding baselines).

 13

none small large
A 0 20 80
σ n/a 10 30

Large Count Parameters

Table 1. Parameter values for β = 90 (large count).

none small large
A n/a n/a 6
σ n/a 0.5 0.7
µ n/a 1.0 1.0

Small Count Parameters

Table 2. Parameter values for β = 0 (small count).

The “large” values in Table 1 result in disease incidence patterns similar to the

CDC’s S08 simulated datasets at www.bt.cdc.gov/surveillance/ears/datasets.asp. The

“small” and “none” values result in disease incidence patterns similar to the S01 dataset,

as well as other patterns that are intermediate between S01 and S08. Combinations of the

values in Table 2 result in disease incidence patterns similar to S03, S04, S15, and S34.

3. Imposing Outbreaks

An outbreak in this work was defined to be a linear increase up to some day “X”,

followed by an equal linear decrease back to the normal incidence rate. Outbreaks

durations from three to fifteen days were evaluated. For example, a seven day outbreak

starting on day one would include a linear increase in the mean up to day four where it

would peak and then decrease back to its original incidence rate on day eight. Small,

medium, and large outbreaks for the large baseline means were defined as 10%, 25%, and

50% of the baseline mean, respectively. The four outbreak magnitudes for the small

count cases were small, medium, large, and extra large; these were calculated by taking

10%, 25%, 50%, and 100% of the sum of the expected value and three standard

deviations of Y, respectively.

 14

In order to ensure a proper “warm-up” period, outbreaks were imposed on the

synthetic syndromic surveillance data only after 100 days of no-outbreak data had been

generated. During this period, each method was run on the data, just as would be done in

an actual syndromic surveillance application. Also, in order to ensure a random

beginning day for the outbreak, the first day of this 100 day warm-up period was a

random day in the year, with the outbreak immediately following this 100 day period.

 15

III. DESCRIPTION OF THE DETECTION ALGORITHMS

A. CURRENT UNIVARIATE METHODS

1. C1, C2, and C3 Methods

As described in Fricker (2007a), the current EARS methods called “C1,” “C2,”

and “C3” are defined as follows. Let ()X t be an observation for period t, such as the

number of individuals arriving to a particular hospital with a specific syndrome on day t.

The C1 method calculates the statistic 1()C t for day t as

1
1

1

() ()()
()

X t X tC t
s t
−

=

where 7
1 1
() () / 7t

i t
X t X i−

= −
= ∑ and ()27

1 11
() () () / 6t

i t
s t X i X i−

= −
= −∑ , where 1()X t and s1(t)

are the moving sample mean and standard deviation, respectively. If)(tX equals

1()X t for seven continuous days (which can sometimes occur, particularly in the small

count scenarios),)(1 ts is automatically set to the previous day’s)(1 ts . (Setting)(1 ts to

1(1)s t − avoids dividing by zero when calculating the C1 statistic.) The C1 method

signals an alarm at time t when the 1C statistic exceeds a fixed threshold, which in EARS

is fixed at three sample standard deviations above the moving sample mean: 1() 3C t > .

The C2 method is similar to the C1 method, but incorporates a two-day lag in the

mean and standard deviation calculations. It calculates

3
2

3

() ()()
()

X t X tC t
s t
−

= ,

where 9
3 3
() () / 7t

i t
X t X i−

= −
= ∑ and ()29

3 13
() () () / 6t

i t
s t X i X i−

= −
= −∑ , and signals an alarm

when 2 () 3C t > .

 16

The C3 method uses the C2 statistics from the past three days to calculate the C3

statistic, signaling an alarm when 3() 2C t > . The C3 statistic for day t is calculated as

[]
2

3 2() max 0, () 1
t

i t
C t C i

−

=

= −∑ .

For the implementation of the three methods in this work, fixed thresholds as

described above were not used. Instead, the thresholds were adjusted to achieve

comparable average time to first signal (ATFS) for each scenario without outbreaks. In

industrial statistical process control (SPC) terms, this is equivalent to choosing a

threshold to achieve a desired in-control average run length.

2. The CUSUM Method

The cumulative sum (CUSUM) is a well known statistical process control

methodology. Montgomery (2001) provides an excellent introduction to the CUSUM

method in an industrial statistical process control setting and Hawkins and Olwell (1998)

provide a comprehensive treatment of the CUSUM. Here, the focus is on the

standardized CUSUM as described in Montgomery. Let

i
i

XY µ
σ
−

=

where iX is the ith observation, µ is the expected mean, and σ is the standard

deviation. If it is assumed that the iX s are normally distributed so that 2~ (,)iX N µ σ ,

then ~ (0,1)iY N . The CUSUM for iY at time i, calculates

 1max 0,i i iC y k C+ +
−⎡ ⎤= − +⎣ ⎦ . (2)

The value k is called the reference value and is generally set at one-half of the shift in the

mean that is desired to be detected quickly. In this research, iY will be the difference

between the prediction an adaptive regression and the observed count and thus k was set

in terms of a fraction of the standard deviation of the prediction error.

 17

For the CUSUM, the threshold h was set such that when there has not been a

disease or bioterrorism outbreak, the ATFS is equal to the ATFS for the EARS methods.

If at some point C h+ > , it is flagged as a possible disease outbreak or bioterrorism

attack.

The CUSUM defined in Equation (2) is a one-sided CUSUM, meaning that, in

this case, it will only detect increases in the mean. If it is important to detect both

increases and decreases in the mean, a second CUSUM can be used to flag decreases.

However, in syndromic surveillance, decreases are not relevant since it is only important

to quickly flag increases in disease incidence.

B. ADAPTIVE REGRESSION

As stated before, syndromic surveillance data often has systematic trends, such as

seasonal cycles, day of the week effects, and other patterns. One interpretation of this

fact is that, given the last few weeks of counts are “high” on average, one would

generally expect the next day’s count to be “high” as well – that is, the counts exhibit

autocorrelation. However, traditional statistical process control methods such as the

CUSUM assume that observations are independent and identically distributed (i.i.d.),

which is to say that these methods assume that the data do not contain such trends

(Fricker, 2007a). This is clearly not the case with disease incidence data.

One approach is to model the systematic component of the data, use the model to

forecast the next day’s observation, and then apply the standard SPC methods to the

forecast errors. For a model that results in i.i.d. forecast errors, such an approach is

appropriate. Examples in the literature include the CUSUM applied to prediction errors

in Brillman et al. (2005), the CDC’s cyclical regression models discussed in Hutwagner

et al. (2003), log-linear regression models in Farrington et al. (1996), and time series

models in Reis and Mandl (2003). See Shmueli (2006) for additional discussion of the

use of regression, and see time series methods for syndromic surveillance and Burkom et

al. (2006) for a comparison of two regression-based methods and an exponential

smoothing method applied to biosurveillance forecasting. Also see Lotze et al. (2006) for

a detailed discussion of preconditioning applied to syndromic surveillance data.

 18

The challenge for the purposes of this work was to construct a model capable of

handling the systematic trends in the data. As stated earlier, for the purposes of these

simulations, an assumption was made in order to model those trends: the mean follows an

annual sinusoidal cycle. However, it was not assumed that it would be possible to go

back far enough in time to model the sinusoidal cycle and make accurate predictions (i.e.,

to go back years in the data to predict the time in the current year one would expect to see

a certain part of the sinusoid). There are two reasons for this:

(1) Multiple years of data would be needed, which is undesirable both because the

data may not be available and because, even if it is, changes in population and

other factors are likely to make older data unreliable.

(2) The annual cycle in the data generated in this work was fixed, which is

artificial. In real data, disease incidence is variable, with the beginning, end,

and amplitude of the sinusoidal pattern all being essentially random from year

to year.

In order to still to capture the systematic component (i.e., the current sinusoid) of

the data, yet not to attempt to predict it from year to year, the “adaptive regression model

with sliding baseline” of Burkom et al. (2006) was employed. It can be described as

follows. Let Xt be the observation (say chief complaint count on day t); the observations

are regressed over time for some fixed number of time periods n (Burkom et al. used an

8-week period). Then the regression would look like

0 1tX tβ β ε= + +

where 0β is an intercept term, 1β is the slope, andε is the error term, meaning that, due to

random variability, the model cannot fit perfectly. The model is fit using the least

squares approach. The estimates of the counts for each time period ,..., (1)t t n− − , where

time is always relative to the current observation, are

 19

0 1
ˆ ˆˆ

tX tβ β= + ,

and the forecast error for time t+1 is

()1 1 0 1
ˆ ˆ 1t tX tβ β+ +

⎡ ⎤∆ = − + +⎣ ⎦ .

Within the framework of syndromic surveillance, the model is refit at each time t

(say, each day) and, if the model fits well, then one hopes that the i∆ s are “small”

according to some measure, such as mean square or mean absolute deviation. In the

above two equations, subscripts for the time period t were left off of the coefficient terms

for the sake of clarity, but it should be understood that, really, the coeffecients are

reestimated at each time t.

One can easily generalize this approach to allow for nonlinearities. This may or

may not be important, depending on how long of a time period is considered and how big

the amplitude of the sinusoid is. To allow for a quadratic trend, one would include a

quadratic term in the model,

2
0 1 2tX t tβ β β ε= + + + ,

and estimate the forecast error as

() ()2
1 1 0 1 2

ˆ ˆ ˆ1 1t tX t tβ β β+ +
⎡ ⎤∆ = − + + + +⎣ ⎦ .

Finally, when introducing day-of-the-week effects in the data (and keeping the

quadratic term), the model becomes

2
0 1 2 3 4 5 6 7 8t Mon Tues Wed Thurs Fri SatX t t I I I I I Iβ β β β β β β β β ε= + + + + + + + + + ,

where the Is are indicators that take on the value 1 if t is that day of the week and 0

otherwise. The forecast error when day t+1 is a Sunday is

() ()2
1 1 0 1 2

ˆ ˆ ˆ1 1t tX t tβ β β+ +
⎡ ⎤∆ = − + + + +⎣ ⎦

and for any other day of the week it is

 20

() ()2
1 1 0 1 2

ˆ ˆ ˆ ˆ1 1t t jX t tβ β β β+ +
⎡ ⎤∆ = − + + + + +⎣ ⎦

where j=3 for Monday, j=4 for Tuesday, etc.

Due to the nature of the regression model used, it attempts to predict the mean

(i.e., the expected value) of the process which is generating the data, and, therefore, it

will predict non-integer count values. Although the actual count values were forced to be

integers, these predicted counts produced by the regression were not. Forcing these mean

values to be whole numbers would only add excess noise to the simulations.

 21

IV. COMPARISON METHODOLOGY

This chapter describes the methodology used to evaluate the relative performance

of the various methods studied, as well as a description of how various input and

threshold values were chosen. A master table of all parameters, input values, and

threshold values is included at the end of the chapter.

A. METRICS

1. Average Time to First Signal Given a True Signal

The average run length (ARL) metric that is common in the SPC literature was

not used in this work. Instead, a “time to first alarm” metric was employed. The problem

with using the ARL is that the autocorrelation in syndromic surveillance data causes

sequences of alarms to occur. Therefore, a metric similar to what is sometimes used in

the SPC literature called “average time to signal” (ATS) was employed, but only the first

signal was counted as an alarm; thus, the metric for this work was the “average time to

first signal” (ATFS).

In the conduct of the simulations, the thresholds were set such that all methods

had the same ATFS under some background (non-outbreak) disease incidence scenario;

then, under outbreak conditions, the ATFSs given a true signal was calculated for the

methods for each outbreak scenario. The goal for this measurement was to measure how

quickly each method signals an alarm, given that the method detects the outbreak. In

instances when an outbreak goes undetected by some method during its duration but is

later detected, that detection is not counted in the ATFS given a true signal.

2. Fraction Missed

Another useful metric used to evaluate relative performance of the methods was

the fraction missed. Unlike in the typical SPC comparison where the mean is assumed to

jump and remain in an “out-of-control” condition until the detection algorithm signals, in

syndromic surveillance an outbreak period is transitory. As such, it is possible for a

 22

detection algorithm to miss the outbreak and subsequently signal after the outbreak has

passed. Such signals are useless and it is important to understand how well a detection

algorithm signals during the outbreak period. The fraction missed shows the fraction of

the time that a method misses detecting an outbreak. Of course, the higher the fraction

missed for a particular method, the worse the performance of that method.

B. CHOOSING INPUT AND THRESHOLD VALUES

1. Optimizing n for the Adaptive Regression Model

 When using regression to predict future observations, the question that naturally

arises is how much historical data should be used in order to fit the regression. In this

work, two alternatives were drawn from existing practice and the literature: (1) seven

days of historical data, which matches what is used in the C1, C2, and C3 EARS

methods, and (2) eight weeks of historical data as recommended by Burkom et al. (2006).

 Of course, with too few days of data, the regression model would have a tendency

to follow the daily variability too much, missing the actual underlying data trend. While,

generally speaking, more data should allow for a more detailed regression model and

presumably a better prediction, often in syndromic surveillance the amount of available

data is limited, or the older data is of questionable relevance due to changing trends or

phenomena. Hence, there is a trade-off to be made between the amount of historical data

used in a particular model and the predictive accuracy of that model.

 This led to attempting to come up with an “optimal” n (number of days to regress

over) for a given type of model for each case (baseline, amplitude, and standard deviation

combination) under consideration since, just due to the daily variability, even a regression

that perfectly captured the underlying data trend would have both positive and negative

residuals (the difference between the actual observation and the predicted observation).

The best n would be the n which minimizes the average squared residual over the entire

simulated data series.

 Two separate regression models were evaluated in order to decide on the best

model, and an optimal n was found for the best model. The first model considered was a

simple linear regression model with an intercept term and a slope term; this model found

 23

the least-squares best fit line for the counts of the past n days and predicted the next day’s

count. The second was a multiple regression model with a quadratic term – i.e., the

model had an intercept, slope, and quadratic term. This model was like the first with the

added ability to capture curves in the data with the squared term, where the squared term

was simply the time squared.

 Simulations were run in order to determine the optimal n for each model. The

results of the simulations were plotted, and an example of one such plot is shown in

Figure 1 for the case of baseline 90, amplitude 80, and standard deviation 10. The

optimal n was chosen simply by visual inspection with the criteria that the n be as small

as possible but also as close to achieving the minimum average squared residual as

possible. This meant that the chosen “optimal” n was the smallest n that achieved most

of the reduction in the average squared residuals, as opposed to the n that occurred

precisely at the minimum point on the curve. The result of this metric was that, given a

chosen “optimal” n, there might be a larger n (such as the eight weeks used by one of the

CUSUM methods) that performed better in terms of minimizing the average squared

residual, simply because it used more days of data. For the curves in Figure 1, the

“optimal” n was chosen to be 15 days for the linear model and 50 days for the quadratic

model. The increase in average squared residual as the n gets large is due to the model

over-regressing the data. That is, the regression model is using too many days of data to

regress over, and it starts missing the more localized in-control trends.

 Figure 1 also shows that the linear model achieved the same minimum average

squared residual as the quadratic model but with a smaller n. This occurred consistently

for all of the scenarios (see Appendix A), which led to the linear model being chosen as

the superior model for all scenarios.

 24

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

450

regress days

av
gS

qd
R

es
id

ua
l

linear
square

Figure 1. Predictive performance of the linear and quadratic models for baseline

90, amplitude 80, and standard deviation 10.

 Tables 3 and 4 show the “optimal” n for all the scenarios without and with the day-

of-the-week effects, respectively. As just described, it shows that the linear model

achieved smaller ns than the quadratic model. It is important to note that when the

amplitude is set to zero, there will never be an n value that over-regresses, causing the

average squared residual to increase as n increases. The average squared residual will

always decrease with an increase in n even if it only decreases marginally, theoretically

making the optimal n value infinity. As before, visual inspection was used as before to

pick an n value where the average squared residual value began to flatten out.

 When the day-of-the-week effect is included, additional terms are needed in the

predictive model, which increases the required amount of historical data needed to

estimate the coefficients for those terms. For example, the presence of day effects in

Burkom et al. (2006) is one of the reasons they used eight weeks of historical data. Table

4 summarizes the results.

 25

β A σ
"optimal"
n (linear)

"optimal" n
(quadratic)

no day-of-the-week effects

45
0 6 0.5 25 45
0 6 0.7 25

55
90 0 10 35 50
90 0 30 45

30 40 55
90 20 10 35 50

30 30 50
90 80 10 15 28
90 80

90 20

"Optimal" n Values for Adaptive Regression

Table 3. “Optimal” n values for linear and quadratic adaptive regression models, with no
day-of-the-week effect.

β A σ
"optimal"
n (linear)

"optimal" n
(quadratic)

"Optimal" n Values for Adaptive Regression
with day-of-the-week effects

75
90 80 10 40 55
0 6 2.8 56

Table 4. “Optimal” n values for linear and quadratic adaptive regression models, with the

day-of-the-week effect included.

2. Choosing k

In Montgomery and Peck (1992) the variance of the predication error for a new

observation y* in a linear regression is

()2*
* * 2 1ˆ() 1Y

xx

x x
Var y y

n S
σ

⎡ ⎤−⎢ ⎥− = + +⎢ ⎥
⎢ ⎥⎣ ⎦

where:
• *ŷ is the predicted value and *y the observed value for a specific *x value;
• n is the number of (x,y) pairs of data in the original regression;
• xxS is the sum of the squared differences between the xs in the regression

and the mean of the xs:

 26

• ()
2

1

n

xx i
i

S x x
=

= −∑ ;

• ()2*x x− is the squared difference between the *x value for the prediction

and the mean of the n xs in the regression model; and,

• 2
Yσ is the variance of Y which can be estimated as ()

2
2

1

1ˆ ˆ
2

n

i i
i

y y
n

σ
=

= −
− ∑ .

Thus, the standard deviation of the prediction error can be calculated as

()2*

1. .(prediction error) 1Y
xx

x x
s d

n S
σ

−
= + + , (3)

which then can be used as some multiple or fraction of the value for k in the univariate

CUSUM.

For this problem, Equation (3) can be further simplified, since the x values are

sequential integers representing time relative to the current day. That is, n is the number

of days to regress over, with yesterday being “day n” and going back in time to “day 1”

(which is the nth day in the past relative to today). By always trying to predict today’s

value and using the regression fit on the past n days, one can set * 1x n= + and the mean

is always ()1 / 2x n= + . Therefore,

 ()
2 2 22* (1) (1) (1)1

2 2 2
n n nx x n + + +⎛ ⎞ ⎛ ⎞− = + − = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (4)

Similarly, one can solve for xxS as follows:

 27

()

()

2

1
2

1

1 / 2
2

1

3 2

1
2

2

1 1 1 12 3
3 2 2 2

n

xx i
i

n

i

n

i

S x x

ni

i

n n n

=

=

−

=

= −

+⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

⎛ ⎞− − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

∑

∑

∑

where the third step follows assuming n is odd and the last step follows since

()2 3 2

1

1 2 3
6

k

x
x k k k

=

= + +∑ . After some algebra, this becomes

()2 1

12xx

n n
S

−
= . (5)

Substituting (4) and (5) into Equation (3) and doing some additional algebraic

simplification gives

()
2

. . 2

3 2. . prediction errorp e Y
n ns d

n n
σ σ + +

= =
−

.

Now, this is just a function of Yσ ,and n where Yσ is known or estimated. In the

above equation, the square root part is called the “sigma multiple”, and it has been plotted

against various values of n in Figure 2.

 28

Figure 2. “Sigma multiple” for various n values

What this plot shows is that if optimal ns in the regression fall between about 30

and 60, then the standard deviation of the prediction error should be roughly about 1.07

to 1.03 times the size of the standard deviation used in the data simulation.

Assuming it is important to detect an increase in mean disease incidence of one

standard deviation of the prediction error set . . /2p ek σ= in the CUSUM. Thus, for

adaptive regression models with sliding baselines between 30 and 60, the reference value

was set

. . /2 1.05 /2 /2.p e Y Yk σ σ σ= ≈ ≈

For large counts, the reference value was thus set /2.k σ= For small counts,

because of the lognormal random daily variation, /2Yk σ= where

() () 1/22 2exp(1) exp 2Yσ σ µ σ⎡ ⎤= − +⎣ ⎦ .

When n = 7 – i.e., when the length of the adaptive regression sliding baseline was

matched to the amount of data as used in the C1, C2, and C3 methods – Figure 2 shows

that 0.65k σ= for the large counts and 0.65 Yk σ= for the small counts. In particular,

 29

when the random noise is generated by)7.0,0.1(LN , k = 2.8/2 = 1.4, and when the

random noise is generated by)5.0,0.1(LN , k = 1.6/2 = 0.8.

3. Choosing h

A threshold for each method needed to be chosen in some way. While a low

threshold would allow for faster detection of an outbreak, it would also increase the

number of false alarms occurring. As is common practice, the non-outbreak ATFS was

set to 100 days for this work, and the h (threshold) was empirically determined for each

method. This was done in order to ensure equal performance among all the procedures in

the absence of an outbreak. An ATFS of 100 means that for an in-control mean, a

method using the predetermined h will signal an initial false alarm one out of every

hundred days on average. It should be noted that the thresholds for the C1, C2, and C3

methods were chosen empirically in order to generate an ATFS of 100 days; this was

different from the literature, where the C1, C2, and C3 had thresholds of 3, 3, and 2,

respectively.

It is important to note that with the use of a 100 day ATFS, one result could be an

excessive number of false alarms if one or more of these methods were being

simultaneously run on the data from, say, 1000 hospitals. Specifically, with an ATFS of

100 days, one would expect roughly one false signal every 100 days for each hospital.

With 1000 hospitals this would result in, on average, about 10 false alarms each day or

3650 false alarms over the course of a year. Then, if there was one real attack in the year,

how would this one attack be distinguished from all the false signals? This is essentially

the situation the EARS or BioSense systems are in when they use the fixed thresholds,

since for the C1 and C2 our empirical thresholds were close to the fixed values used in

practice by EARS.

Since longer ATFS periods would have taken significantly longer to simulate, the

100 day ATFS was chosen for computational convenience, where the goal was to assess

the relative performance of the methods. It is assumed that this relative ranking would

not change with changes in the ATFS. However, if these methods were implemented in

simultaneous monitoring schemes, the thresholds could and should be adjusted

 30

(increased) in order to appropriately balance between expected number of false alarms

and the probability of detecting an actual attack.

Choosing the value for h was a simple procedure via simulation. For this work, it

was done by first choosing an h value for a certain method, and then running the method

on simulated data with no outbreak, using the h as the alarm threshold. The number of

days the method ran without an alarm for each run was recorded and the average of those

was calculated. If the ATFS was not very close to 100 days, the h was adjusted and the

method rerun multiple times once again. This was repeated until the ATFS approached

100, and the standard error of the ATFS was less than 1.0. The h values for each of the

methods for all of the scenarios are shown in Table 5.

Case Scen.
Count
Size

DoW
effect? β A µ σ Size Value

7 day
CUSUM

"optimal"
CUSUM

56 day
CUSUM C1 C2 C3

"optimal"
CUSUM n

(days)
1 1 large no 90 80 0 30 small 9.0 86.9 88.8 88.3 2.98 2.89 3.55 30
1 2 large no 90 80 0 30 med 22.5 86.9 88.8 88.3 2.98 2.89 3.55 30
1 3 large no 90 80 0 30 large 45.0 86.9 88.8 88.3 2.98 2.89 3.55 30
2 4 large no 90 80 0 10 small 9.0 31 33 39 2.71 2.63 3.4 15
2 5 large no 90 80 0 10 med 22.5 31 33 39 2.71 2.63 3.4 15
2 6 large no 90 80 0 10 large 45.0 31 33 39 2.71 2.63 3.4 15
3 7 large no 90 20 0 30 small 9.0 94.4 94.2 92.9 2.74 2.7 2.97 40
3 8 large no 90 20 0 30 med 22.5 94.4 94.2 92.9 2.74 2.7 2.97 40
3 9 large no 90 20 0 30 large 45.0 94.4 94.2 92.9 2.74 2.7 2.97 40
4 10 large no 90 20 0 10 small 9.0 31.6 32 31.7 2.735 2.685 3.01 35
4 11 large no 90 20 0 10 med 22.5 31.6 32 31.7 2.735 2.685 3.01 35
4 12 large no 90 20 0 10 large 45.0 31.6 32 31.7 2.735 2.685 3.01 35
5 13 large no 90 0 0 30 small 9.0 94.9 94 93 2.75 2.7 2.97 45
5 14 large no 90 0 0 30 med 22.5 94.9 94 93 2.75 2.7 2.97 45
5 15 large no 90 0 0 30 large 45.0 94.9 94 93 2.75 2.7 2.97 45
6 16 large no 90 0 0 10 small 9.0 31.7 31.8 31 2.745 2.7 2.967 35
6 17 large no 90 0 0 10 med 22.5 31.7 31.8 31 2.745 2.7 2.967 35
6 18 large no 90 0 0 10 large 45.0 31.7 31.8 31 2.745 2.7 2.967 35
7 19 small no 0 6 1.0 0.7 small 2.0 9.2 10.2 10.4 8.2 7.42 18.15 30
7 20 small no 0 6 1.0 0.7 med 4.0 9.2 10.2 10.4 8.2 7.42 18.15 30
7 21 small no 0 6 1.0 0.7 large 8.0 9.2 10.2 10.4 8.2 7.42 18.15 30
7 22 small no 0 6 1.0 0.7 X-large 16.0 9.2 10.2 10.4 8.2 7.42 18.15 30
8 23 small no 0 6 1.0 0.5 small 1.0 5.2 5.63 6 6.52 6.1 18.2 15
8 24 small no 0 6 1.0 0.5 med 2.0 5.2 5.63 6 6.52 6.1 18.2 15
8 25 small no 0 6 1.0 0.5 large 4.0 5.2 5.63 6 6.52 6.1 18.2 15
8 26 small no 0 6 1.0 0.5 X-large 8.0 5.2 5.63 6 6.52 6.1 18.2 15
7 27 small yes 0 6 1.0 0.7 small 2.0 n/a 10.8 10.8 7.7 7.3 15.5 56
7 28 small yes 0 6 1.0 0.7 med 4.0 n/a 10.8 10.8 7.7 7.3 15.5 56
7 29 small yes 0 6 1.0 0.7 large 8.0 n/a 10.8 10.8 7.7 7.3 15.5 56
7 30 small yes 0 6 1.0 0.7 X-large 16.0 n/a 10.8 10.8 7.7 7.3 15.5 56
2 31 large yes 90 80 0 10 small 9.0 n/a 39 41.9 2.7 2.61 3.38 40
2 32 large yes 90 80 0 10 med 22.5 n/a 39 41.9 2.7 2.61 3.38 40
2 33 large yes 90 80 0 10 large 45.0 n/a 39 41.9 2.7 2.61 3.38 40

Parameters Outbreak h values

Table 5. Summary of input parameters, outbreak parameters, h, and n values.

 31

V. RESULTS

This chapter summarizes the results of the simulations, focusing on the large

count, small count, and day-of-the-week effect results. See Appendix B for the plots

from all 33 scenarios, and see Appendix C for all simulation code used. See Table 5 for a

full summary of all parameters and input values, including outbreak values.

In general terms, the simulations were conducted as follows. A loop was used in

order to have the program run for a set number of outbreaks. First, a random start day

was chosen, and data was generated for a warm-up period of 100 days following the start

day. Then, the outbreak was imposed, and the methods analyzed the data in an attempt to

find an outbreak. Once an alarm occurred, the data generation terminated and the loop

restarted. This process continued until the completion of all loops. Given a detection

within the outbreak duration, the data generation would start again in the above

description with a random start day. Given that the outbreak was not detected within its

duration, the data generation would continue until a false alarm occurred (for

programming convenience). Once a false alarm occurred, the data generation terminated

and the loop restarted. In the context of statistics collection, the false alarms were kept

separate from the actual alarms.

A. LARGE COUNT BASELINE MEAN

Although 18 simulation scenarios were run, the results can be largely summarized

by the six plots in Figure 3, which show the results of using the case 2 parameters for

scenarios 4, 5, and 6 for small, medium, and large outbreaks, respectively. For all large

count cases (all with baseline 90), small, medium and large outbreaks were calculated to

be of magnitude 9, 22.5, and 45, respectively. The upper, left-hand plot shows the

average time to first signal given a true signal starting with a small outbreak, with the

middle and lower plots being for medium and large outbreaks, respectively. The right-

hand plots show, in increasing order of outbreak, the fraction of the time a procedure

 32

missed detecting the outbreaks. Each plot evaluates the performance for the C1, C2, C3,

and CUSUM methods, using the three sliding baseline lengths (n): 7, 15 (the “optimal”

for case 2), and 56 days.

The graphs demonstrate that the CUSUM methods – particularly the ones with

larger n – consistently outperform the three EARS methods studied. The three EARS

methods performed similarly across all simulations. Of the EARS methods, the C2

method had the lowest fraction missed on the majority of the simulations, but the C1 was

typically faster than the C2 and C3 for the ATFS given a true signal. The C3 method’s

performance varied, but it was typically outperformed by the C1 in the ATFS given a true

signal and the C2 in the fraction missed. In the few scenarios where the C3 did

outperform the C1 or C2, the difference in performance between the C3 and C1 or C3

and C2 was small.

While the EARS methods and the CUSUM with a 7 day sliding baseline tended to

have slightly shorter ATFS given a true signal than the other two CUSUMs, this came at

the expense of missing significantly more outbreaks than the CUSUMs with either a 15

(“optimal” n for this case) or 56 day sliding baseline. Recall that the metric used to

choose the “optimal” n was visual inspection of the smallest n that achieved most of the

reduction in the average squared residuals (see Chapter IV). There was a tradeoff in

determining which method was better because, for the simulated data, the CUSUM with

56 day sliding baseline consistently had the lowest fraction missed but did not necessarily

have the shortest ATFS given a true signal. It also had the largest n value, which might be

considered undesirable in some situations. This difference in performance is evident in all

outbreak magnitudes but is most evident with the larger magnitude outbreaks. For the

case 2 scenarios considered here, the CUSUM with a 56 day sliding baseline is preferred,

because it consistently had the lowest fraction missed, with an ATFS given a true signal

in the 2-6.5 day range.

However, other methods, given they detected the outbreak within its duration,

often had slightly lower ATFS given a true signal, and these ATFS values usually only

differed by somewhere around 0-2 days, but usually towards the lower end of that range

for outbreaks of up to nine day duration. This indicates that, were the simulated data real,

 33

other methods might slightly outperform the CUSUM with a 56 day sliding baseline in

terms of speed of detection for the times that they detected within the outbreak’s

duration. While it is true that a tradeoff exists here, these simulations are simply

representations of actual data in terms of actual counts, outbreaks, and different variations

(annual cycle, standard deviation, etc.). Therefore, the specific value of the ATFS given a

true signal should only be used to determine the relative performance of the methods – it

should not be used to conclude that the real-life ATFS given a true signal would be what

is shown in the plots.

Also, in Figure 3 the C1 and CUSUM with a 7 day sliding baseline suffer the

most from being contaminated by the outbreak data in the largest magnitude outbreak

scenarios. That is, in the lower, right-hand plot the fraction missed by these two

procedures increases for longer duration outbreaks. This is because, if these procedures

fail to detect the outbreaks early on, they begin to incorporate the outbreak data into their

calculations (either the moving average for the C1 or the adaptive regression predictions

for the CUSUM). As outbreak data is incorporated into the calculations, it becomes

increasingly difficult to distinguish the outbreak from the baseline mean of disease

incidence. In comparison, the two day lag in the C2 procedure essentially delays this

problem. It can be seen in scenario 6 of Figure 3 that the C2 fraction missed increases for

outbreaks of longer duration. This is also true for the C3, which is a function of the C2

test statistic. In spite of the contamination, the relative performance of the EARS

methods remains unchanged.

 34

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 4

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 4

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 5

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 5

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 6

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 6

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

Figure 3. Performance of the procedures for case 2 (large count), scenarios 4-6.

 35

B. SMALL COUNT BASELINE MEAN

When the first entire set of small count scenarios was run, a mistake was made

that set the k value to a lower value than shown in the calculations used to set k.

Although lower, the threshold values were set to have the non-outbreak ATFS equal to

100, and the relative performance of each algorithm did not change. As with the large

counts it could clearly be seen in the plots that varying amplitude made no discernable

difference in the results. That is, that the amplitude simply was not a factor in

determining which methods were superior to the others, because the adaptive regression

did a sufficient job of removing the sinusoidal effects in the data stream for the

CUSUMs. Due to the error discovered, the small count scenario simulations were run

again with the correct desired k value, but this time they were conducted by holding the

amplitude constant at a value of 6 (as mentioned briefly in Chapter II), which reduced the

total number of simulation scenarios. The four outbreak magnitudes for the small count

cases were small, medium, large, and extra large; these were calculated by taking 10%,

25%, 50%, and 100% of the sum of the expected value and three standard deviations,

respectively.

Figure 4 and Figure 5 show the results of using the case 7 parameters for

scenarios 19, 20, 21, and 22; these plots are a good representation of all small, medium,

large, and extra large magnitude outbreaks scenarios for the small count cases, where the

outbreaks were of size 2, 4, 8, and 16, respectively. Comparing Figure 3 (large count) to

Figures 4 and 5 (small count), one can see their overall similarity. The CUSUMs with

the longer sliding baselines are again the best performing procedures (where the

“optimal” sliding baseline in this scenario was 30 days), and the EARS methods

performed relatively similarly. Again, the C1 generally has the lowest ATFS given a true

signal and, of the EARS methods, the C2 generally has the lowest fraction missed.

Although the C1 does have the shortest ATFS given a true signal, it completely misses

about 85 to 90 percent of the outbreaks. In comparison, the CUSUMs using either a 30

or 56 day sliding baseline catch virtually all of the outbreaks. For these CUSUMs, the

ATFS given a true signal was about two days for a three day outbreak, and the ATFS

given a true signal was about four days for a 15 day outbreak.

 36

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 19

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 19

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 20

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 20

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

Figure 4. Performance of the procedures for case 7 (small count) for scenarios

19-20.

 37

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 21

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 21

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 22

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 22

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

Figure 5. Performance of the procedures for case 7 (small count) for scenarios

21-22.

 38

C. DAY OF THE WEEK EFFECTS

Lastly, seven scenarios that included day-of-the-week effects were run by

revisiting large count case 2 and small count case 7, this time including the day-of-the-

week effect in the baseline disease incidence. Figure 6 shows the results of these

simulations for large count case 2 (scenarios 31-33) parameters, and Figure 7 and Figure

8 show the results of these simulations for small count case 7 (scenarios 27-30)

parameters. Outbreaks for large count were of size 9, 22.5, and 45, and outbreaks for

small count were of size 2, 4, 8, and 16, defined as stated earlier.

It should be noted that these plots do not include a CUSUM with a 7-day sliding

baseline since seven data points are insufficient to estimate the eight parameters in the

adaptive regression (slope, intercept, and six say-of-the-week indicators). The results

with the day-of-the-week effect included were basically the same as in the large and

small count cases that did not include it. Once again, the CUSUMs based on the adaptive

regression residuals clearly outperform the EARS methods.

 39

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 31

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 31

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 32

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 32

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 33

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 33

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

Figure 6. Performance of the procedures for case 2 (large count) for scenarios

31-33 with day-of-the-week effects included.

 40

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 27

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 27

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 28

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 28

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

Figure 7. Performance of the procedures for case 7 (small count) for scenarios

27-28 with day-of-the-week effects included.

 41

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 29

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 29

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 30

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 30

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

Figure 8. Performance of the procedures for case 7 (small count) for scenarios

29-30 with day-of-the-week effects included.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

VI. CONCLUSIONS AND RECOMMENDATIONS

A clear conclusion resulting from evaluating the EARS methods versus CUSUM

methods applied to the residuals of adaptive regression is that the CUSUM methods with

longer sliding baselines perform significantly better in all the scenarios evaluated. These

scenarios were chosen to imitate the major features of syndromic surveillance data over a

wide variety of conditions. In particular, the EARS methods failed to catch a significant

fraction of outbreaks across a wide variety of background disease incident patterns (large

and small daily counts; large, small, and no seasonal cycles; large and small random daily

fluctuations; and with and without day-of-the-week effects) and a variety of outbreak

magnitudes and durations. Overall, the CUSUM methods, particularly the one that uses

the 8-week (56 day) sliding baseline, outperformed the EARS methods. Therefore,

standard syndromic surveillance systems using the EARS methods would benefit from

replacing the EARS methods with a CUSUM method, setting the CUSUM thresholds in a

similar fashion as done in this research in order to minimize the false alarm burden as

much as possible.

 44

THIS PAGE INTENTIONALLY LEFT BLANK

 45

LIST OF REFERENCES

Brillman, J.C., Burr, T., Forslund, D., Joyce, E., Picard, R., and E. Umland (2005).
 “Modeling Emergency Department Visit Patterns for Infectious Disease
 Complaints: Results and Application to Disease Surveillance,” BMC Medical
 Informatics and Decision Making, 5.

Burkom, H.S., S.P. Murphy, and G. Shmueli (2006). “Automated Time Series
 Forecasting for Biosurveillance,” Statistics in Medicine, accepted (available at
 http://www3.interscience.wiley.com/cgi-bin/abstract/114131913/). June 2007.

Farrington, C.P., Andrews, N.J., Beale, A.D., and M.A. Catchpole (1996). A Statistical
 Algorithm for the Early Detection of Outbreaks of Infectious Disease, Journal of
 the Royal Statistical Society, Series A (Statistics in Society), 159, 547-563.

Fricker, R.D., Jr. (2007a). Syndromic Surveillance, Encyclopedia of Quantitative Risk
 Assessment (to appear).

Fricker, R.D., Jr., (2007b). Directionally Sensitive Multivariate Statistical Process

Control Methods with Application to Syndromic Surveillance, Advances in
Disease Surveillance, www.isdsjournal.org, 3:1. June 2007.

Fricker, R.D., Jr., and H. Rolka (2006). Protecting Against Biological Terrorism:

Statistical Issues in Electronic Biosurveillance, Chance, 91, 4-13.

Hawkins, D.M. and D.H. Olwell (1998). Cumulative Sum Charts and Charting for
 Quality Improvement, Springer.

Hutwagner, L., Thompson, W., Seeman, G.M., and Treadwell, T (2003). “The
 Bioterrorism Preparedness and Response Early Aberration Reporting System
 (EARS),” Journal of Urban Health: Bulletin of the New York Academy of
 Medicine, 80, 89i-96i.

Lotze, T., S.P. Murphy, and G. Shmueli (2006). Preparing Biosurveillance Data for
 Classic Monitoring (draft), in submission to Advances in Disease Surveillance.

Montgomery, D.C., and E.A. Peck (1992). Introduction to Linear Regression Analysis,
 2nd ed., Wiley.

Montgomery, D.C. (2001). Introduction to Statistical Quality Control, 4th edition, John
 Wiley & Sons, New York.

 46

Reis, B.Y., and K.D. Mandl (2003). “Time Series Modeling for Syndromic Surveillance,”
 BMC Medical Informatics for Decision Making, 3.

Shmueli, G. (2006). “Statistical Challenges in Modern Biosurveillance,” Technometrics
 (in submission), draft dated September 18, 2006.

Sosin, Daniel M. (2003). Syndromic Surveillance: The Case for Skillful Investment
 View, Biosecurity & Bioterrorism, 1(4), Mary Ann Liebert, Inc., 247-253.

Stoto, M.A., Fricker, Jr., R.D., Jain, A., Diamond, A., Davies-Cole, J.O., Glymph, C.,

Kidane, G., Lum, G., Jones, L., Dehan, K., and C. Yuan (2006). Evaluating
Statistical Methods for Syndromic Surveillance, in Statistical Methods in
Counterterrorism: Game Theory, Modeling, Syndromic Surveillance, and
Biometric Authentication, A. Wilson, G. Wilson, and D. Olwell, eds., New York:
Springer.

Zhu, Y., Wang, W., Atrubin, D., and Y. Wu (2005). Initial Evaluation of the Early

Aberration Reporting Sysytem --- Florida, Morbidity and Mortality Weekly
Report (Supplement), Centers for Disease Control and Prevention, 54, pp. 123-
130, August 26, 2005.

 47

APPENDIX A: “OPTIMAL” n PLOTS

0 50 100 150 200 250
500

1000

1500

2000

2500

3000

3500

4000

regress days

av
gS

qd
R

es
id

ua
l

linear
square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

90 80 30 30 50

0 20 40 60 80 100 120 140 160
100

200

300

400

500

600

700

800

900

1000

regress days

av
gS

qd
R

es
id

ua
l

linear
square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

90 80 10 15 27

 48

0 50 100 150 200 250 300 350
500

1000

1500

2000

2500

3000

3500

regress days

av
gS

qd
R

es
id

ua
l

linear
square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

90 20 30 40 55

0 50 100 150 200 250 300 350
100

150

200

250

300

350

400

450

regress days

av
gS

qd
R

es
id

ua
l

linear
square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

90 20 10 35 50

 49

0 20 40 60 80 100 120 140
500

1000

1500

2000

2500

3000

3500

regress days

av
gS

qd
R

es
id

ua
l

Linear
Square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

90 0 30 45 55

0 20 40 60 80 100 120 140
100

150

200

250

300

350

regress days

av
gS

qd
R

es
id

ua
l

Linear
Square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

90 0 10 35 50

 50

0 50 100 150 200 250 300 350
5

10

15

20

25

30

35

regress days

av
gS

qd
R

es
id

ua
l

linear
square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

0 6 2.8 30 45

0 50 100 150 200 250
2

3

4

5

6

7

8

9

10

11

regress days

av
gS

qd
R

es
id

ua
l

linear
square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

0 6 1.6 15 45

 51

Optimal n Plots with the Day-of-the-Week-Effect

0 50 100 150 200 250 300
6

8

10

12

14

16

18

20

22

24

26

regress days

av
gS

qd
R

es
id

ua
l

Linear
Square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

0 6 2.8 56 75

0 20 40 60 80 100 120 140 160 180
0

200

400

600

800

1000

1200

1400

regress days

av
gS

qd
R

es
id

ua
l

Linear
Square

Baseline
Mean

Amplitude Standard
Deviation

Optimal n (linear
regression)

Optimal n (square
regression)

90 80 10 40 55

 52

THIS PAGE INTENTIONALLY LEFT BLANK

 53

APPENDIX B: COMPARION RESULTS PLOTS

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 1

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 1

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 54

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 2

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 2

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 55

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 3

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 3

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 56

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 4

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 4

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 57

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 5

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 5

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 58

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 6

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 6

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 59

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 7

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 7

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 60

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 8

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 8

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 61

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 9

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 9

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 62

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 10

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 10

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 63

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 11

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 11

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 64

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 12

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 12

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 65

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 13

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 13

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 66

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 14

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 14

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 67

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 15

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 15

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 68

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 16

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 16

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 69

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 17

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 17

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 70

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 18

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

cusumOpt
cusum7
cusum56
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 18

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

cusumOpt
cusum7
cusum56
c1
c2
c3

 71

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 19

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 19

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 72

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 20

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 20

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 73

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 21

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 21

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 74

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 22

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 22

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 75

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 23

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 23

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 76

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 24

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 24

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 77

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 25

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 25

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 78

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 26

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 26

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (7)
CUSUM (30)
CUSUM (56)
c1
c2
c3

 79

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 27

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 27

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

 80

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 28

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 28

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

 81

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 29

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 29

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

 82

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 30

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 30

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

 83

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 31

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 31

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

 84

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 32

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 32

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

 85

3 5 7 9 11 13 15
0

1

2

3

4

5

6

7

8

Plot of ATFS Given True Signal
Scenario: 33

Outbreak Duration

A
ve

ra
ge

 T
FS

 |
Tr

ue
 S

ig
na

l

CUSUM (40)
CUSUM (56)
C1
C2
C3

3 5 7 9 11 13 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Plot of Fraction Missed
Scenario: 33

Outbreak Duration

Fr
ac

tio
n

M
is

se
d

CUSUM (40)
CUSUM (56)
C1
C2
C3

 86

THIS PAGE INTENTIONALLY LEFT BLANK

 87

APPENDIX C: MATLAB SIMULATION CODE

Optimal n Code

clear
clc
%INITIALIZE VALUES
numYears =30;
numSimDays = 365*numYears; % number of days of data to create
lookBack(1) = 0; % number days to regress over
numWeeks = 20; % maximum number of weeks to regress over (n increases by
7 up to 7*numWeeks)
baseline = 0;
amplitude = 6;
sigma = 0.7;
sigmaZ=2.8;

% Steadily increase # of days to regress over
for (i = 2:1:numWeeks)

lookBack(i) = lookBack(i-1) + 7;

% X matrices for regressions; First Column: ones, Second Column: day #
matX1 = [ones(lookBack(i),1) (1:1:lookBack(i))']; %linear model
matX2 = [ones(lookBack(i),1) (1:1:lookBack(i))' ((1:1:lookBack(i)).^2)'
]; %model with square term

% DATA SIMULATION------------------------------
for (hospCountsDay = 1:1:numSimDays)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;

 88

 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*hospCountsDay/365))+ baseline; % This is the
seasonal mean of the process
%rand_var=randn*sigma; % For large counts
rand_var=lognrnd(1.0,sigma); % For small counts

hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var)); % an
observation on day "hospCountsDay"

% If enough data is available for this "lookBack" number of regress
days, regress
if (hospCountsDay >= (lookBack(i)+1))

% Vector "countLookBack" holds the previous "lookBack" # of days of
count values
 countLookBack = [hospCounts((hospCountsDay-
lookBack(i)):1:(hospCountsDay-1))];

% DAILY REGRESSION CALCULATION----------------
% Regress from day hospCountsDay back "lookBack" number of days (use a
lag later?)

b = regress(countLookBack', matX1); % linear model; b = regress(X,Y)
where X = days, Y = values(counts)
a = matX2\countLookBack'; % squared term model

% PREDICT "TOMORROW'S" COUNT-------------------
tomorrowCount = [1 (lookBack(i)+1)]; % 1 for intercept, (lookBack + 1)
for tomorrow's day #
predCount(hospCountsDay) = tomorrowCount*b; % linear model

tomorrowCount2 = [1 (lookBack(i)+1) (lookBack(i) + 1).^2]; % 1 for
intercept, (lookBack + 1) for tomorrow
predCount2(hospCountsDay) = tomorrowCount2*a; % squared term model

% Calculate residual values (resid = predicted - actual)
residual(hospCountsDay) = hospCounts(hospCountsDay) -
predCount(hospCountsDay); % linear model
sqdResidual(hospCountsDay) = residual(hospCountsDay)^2;

 89

residual2(hospCountsDay) = hospCounts(hospCountsDay) -
predCount2(hospCountsDay); % squared term model
sqdResidual2(hospCountsDay) = residual2(hospCountsDay)^2;

end % end if-statement
end % end hospCountsDay's for-loop

avgSqdResidual(i) = mean(sqdResidual((lookBack(i)+1):numSimDays));
%/(numSimDays - lookBack + 1) LINEAR MDL
avgSqdResidual2(i) = mean(sqdResidual2((lookBack(i)+1):numSimDays));
%/(numSimDays - lookBack + 1) SQUARED MDL

end % end i's for-loop
%
%Plot n vs avgSqdResidual
 plot(lookBack(2:numWeeks), avgSqdResidual(2:numWeeks), 'b')
 xlabel('# regress days');
 ylabel('avgSqdResidual');

hold on

% %Plot n vs avgSqdResidual2 (squared case)
 plot(lookBack(2:numWeeks), avgSqdResidual2(2:numWeeks), 'g')
% xlabel('# regress days');
% ylabel('avgSqdResidual');
 legend('Linear', 'Square');
% %Plot hospital counts
%subplot(1,2,2), plot((1:1:1000), hospCounts(1:1000))
% xlabel('day');
% ylabel('count');

 90

Optimal h Code

clear
clc
% want h of each scenario to give ATFS of 100, with SD of about 1.0,
then fix these.
% What are appropriate magnitudes and slopes of outbreaks
% for a given scenario (with n), and optimal h, plot ATFS vs slope of
% outbreak for CUSUM, C1, C2, C3 to compare them all
numLoops = 1000;
baseline = 90;
amplitude = 80;
sigma = 10;
sigmaZ = 2.8;
k = sigma/2; % for large-count CUSUM
%k = sigmaZ/2; % for small-count CUSUM
%k = sigma*0.65; % for large-count CUSUM w/ lookBack=7
%k = sigmaZ*0.65; % for small-count CUSUM w/ lookBack=7
h = 41.9; % (cusum)
cusum = 0;
runLengthCounter = 0;
TFS(1) = 0 ;
alarmCount = 0;
lookBack = 56;

% START CUSUM METHOD__
for(dummy=1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:(lookBack + 1))
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(j,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(j,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(j,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(j,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(j,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;

 91

 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(j,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(j,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation
on day "hospCountsDay"
end

hospCountsDay = lookBack + 2;

while (cusum < h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 92

hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));

matX1 = [ones(lookBack,1) (1:1:lookBack)'];
matX2 = zeros(lookBack,6);
for i=1:lookBack;
 columnX2=mod(hospCountsDay-i,7)+1;
 if(columnX2<7)
 matX2(lookBack+1-i,columnX2)=1;
 end;
end;
matX =[matX1 matX2];

countLookBack = [hospCounts((hospCountsDay-lookBack):1:(hospCountsDay-
1))];
b = regress(countLookBack', matX);

daysInd=[0, 0, 0, 0, 0, 0];
columnInd=mod(hospCountsDay,7)+1;
if(columnInd<7)
 daysInd(columnInd)=1;
end;

tomorrowCount = [1 (lookBack+1) daysInd]; % 1 for intercept, (lookBack +
1) for tomorrow's day #
predCount(hospCountsDay) = tomorrowCount*b; %it's like you're predicting
the mean of the process
residual(hospCountsDay) = hospCounts(hospCountsDay) -
predCount(hospCountsDay);

cusum = max(0, (residual(hospCountsDay) - k + cusum));

runLengthCounter = runLengthCounter + 1;
hospCountsDay = hospCountsDay + 1;
end % end while (cusum < h) loop

alarmCount = alarmCount + 1;
TFS(alarmCount) = runLengthCounter; % after "alarm", you have a new TFS
value
runLengthCounter = 0; % after "alarm", reset runLengthCounter
cusum = 0; % after "alarm", reset runLengthCounter

end % end i's for-loop
averageTFS = mean(TFS)
stdErrTFS = std(TFS)/(numLoops^0.5)

%
% START C1 METHOD__
alarmCountC1 = 0;
runLengthCounterC1 = 0;
TFSc1(1)=0;
c1h = 2.7;
c1Statistic = 0;
sdMovingAvg=100;

 93

for (dummy = 1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:7)
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7
 if (j==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (j==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (j==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (j==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+rand_var+dayeffect)); % an observation
on day "hospCountsDay"
end

hospCountsDay = 8;

while (c1Statistic < c1h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end

 94

 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts
hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));

movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-7) +
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) +
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3) +
hospCounts(hospCountsDay-2) + hospCounts(hospCountsDay-1))/7;

if (length(movingAvg) >= 14) %need 7 (nonzero) values for an average
if (sdMovingAvg>0)
 oldsdMovingAvg=sdMovingAvg;
end
 sdMovingAvg = ((((hospCounts(hospCountsDay-7) -
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) -
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) -
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) -
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) -
movingAvg(hospCountsDay-3))^2) + ((hospCounts(hospCountsDay-2) -
movingAvg(hospCountsDay-2))^2) + ((hospCounts(hospCountsDay-1) -
movingAvg(hospCountsDay-1))^2))/6)^0.5;
if (sdMovingAvg ==0)
 sdMovingAvg=oldsdMovingAvg;
end
c1Statistic = (hospCounts(hospCountsDay) -
movingAvg(hospCountsDay))/sdMovingAvg;
runLengthCounterC1 = runLengthCounterC1 + 1;
end

 95

hospCountsDay = hospCountsDay + 1;
end % while loop when "alarm" occurs

alarmCountC1 = alarmCountC1 + 1;
TFSc1(alarmCountC1) = runLengthCounterC1; % after "alarm", you have a
new TFS value
runLengthCounterC1 = 0; % after "alvarm", reset runLengthCounter
c1Statistic = 0;

end % dummy's for loop
averageTFSc1 = mean(TFSc1)
stdErrTFSc1 = std(TFSc1)/(numLoops^0.5)

% START C2 METHOD__
alarmCountC2 = 0;
runLengthCounterC2 = 0;
TFSc2(1) = 0;
c2h = 2.61;
c2Statistic = 0;
c2StatTodayMinus2 = 0;
c2StatTodayMinus1 = 0;
c2StatToday = 0;
sdMovingAvg=100;

for (dummy = 1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:9)
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7
 if (j==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (j==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end

 96

 elseif (j==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (j==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 elseif (j==8)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==9)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation
on day "hospCountsDay"
end

hospCountsDay = 10;

 while (c2Statistic < c2h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end

 97

 end

 meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+
baseline;
 rand_var=randn*sigma; % For large counts
 %rand_var=lognrnd(1.0,sigma); % For small counts
 hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));

 movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) +
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) +
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) +
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7;

 if (length(movingAvg) >= 16) %need 7 (16-9) days for an average
 if (sdMovingAvg>0)
 oldsdMovingAvg=sdMovingAvg;
 end
 sdMovingAvg = ((((hospCounts(hospCountsDay-9) -
movingAvg(hospCountsDay-9))^2) + ((hospCounts(hospCountsDay-8) -
movingAvg(hospCountsDay-8))^2) + ((hospCounts(hospCountsDay-7) -
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) -
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) -
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) -
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) -
movingAvg(hospCountsDay-3))^2))/6)^0.5;
 if (sdMovingAvg==0)
 sdMovingAvg=oldsdMovingAvg;
 end

 c2Statistic = (hospCounts(hospCountsDay) -
movingAvg(hospCountsDay))/sdMovingAvg;
 c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one
day old right now
 c2StatTodayMinus1 = c2StatToday;
 c2StatToday = c2Statistic;

 runLengthCounterC2 = runLengthCounterC2 + 1;
 end
 hospCountsDay = hospCountsDay + 1;
 end % while loop when "alarm" occurs

alarmCountC2 = alarmCountC2 + 1;
TFSc2(alarmCountC2) = runLengthCounterC2; % after "alarm", you have a
new TFS value
runLengthCounterC2 = 0; % after "alarm", reset runLengthCounter
c2Statistic = 0;

end % dummy's for loop
averageTFSc2 = mean(TFSc2)
stdErrTFSc2 = std(TFSc2)/(numLoops^0.5)

% START C3 METHOD__
alarmCountC3 = 0;

 98

runLengthCounterC3 = 0;
TFSc3(1) = 0;
c3h = 3.38;
c2Statistic = 0;
c2StatTodayMinus2 = 0;
c2StatTodayMinus1 = 0;
c2StatToday = 0;
c3Statistic = 0;
sdMovingAvg=100;

for (dummy = 1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:9)
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7
 if (j==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (j==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (j==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (j==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 elseif (j==8)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==9)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;

 99

 end
 end

hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation
on day "hospCountsDay"
end

hospCountsDay = 10;

 while (c3Statistic < c3h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

 meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+
baseline;
 rand_var=randn*sigma; % For large counts
 %rand_var=lognrnd(1.0,sigma); % For small counts
 hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var));

 movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) +
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) +
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) +
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7;

 if (length(movingAvg) >= 16) %need 7 (16-9) days for an average

 100

 if (sdMovingAvg>0)
 oldsdMovingAvg=sdMovingAvg;
 end
 sdMovingAvg = ((((hospCounts(hospCountsDay-9) -
movingAvg(hospCountsDay-9))^2) + ((hospCounts(hospCountsDay-8) -
movingAvg(hospCountsDay-8))^2) + ((hospCounts(hospCountsDay-7) -
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) -
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) -
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) -
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) -
movingAvg(hospCountsDay-3))^2))/6)^0.5;
 if (sdMovingAvg==0)
 sdMovingAvg=oldsdMovingAvg;
 end

 c2Statistic = (hospCounts(hospCountsDay) -
movingAvg(hospCountsDay))/sdMovingAvg;
 c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one
day old right now
 c2StatTodayMinus1 = c2StatToday;
 c2StatToday = c2Statistic;

 if (length(movingAvg) >= 19) %need 3 C2 values for C3 (and
all 3 c2Stat values are != 0)
 c3Statistic = max(0, (c2StatToday) - 1) + max(0,
(c2StatTodayMinus1) - 1) + max(0, (c2StatTodayMinus2) - 1);
 runLengthCounterC3 = runLengthCounterC3 + 1;

 end
% runLengthCounterC2 = runLengthCounterC2 + 1;
 end
 hospCountsDay = hospCountsDay + 1;
 end % while loop when "alarm" occurs

alarmCountC3 = alarmCountC3 + 1;
TFSc3(alarmCountC3) = runLengthCounterC3; % after "alarm", you have a
new TFS value
runLengthCounterC3 = 0; % after "alarm", reset runLengthCounter
c3Statistic = 0;

end % dummy's for loop
averageTFSc3 = mean(TFSc3)
stdErrTFSc3 = std(TFSc3)/(alarmCountC3^0.5)

 101

Comparison Metrics Code

clear
clc

numLoops = 2000;
duration = [3 5 7 9 11 13 15];

% Values that change depending on the scenario under consideration:
scenarioNumber = 31; %defines a specific
baseline/amplitude/sigma/outbreak percent combination
baseline = 90;
amplitude = 80;
sigma = 10;
%magnitude = 2; %for small counts: [SD=0.5 : outbreak = 1, 2, 4] [SE=0.7
: outbreak = 2, 4, 8]
magnitude = .1*baseline; % % Large disease outbreak: 10, 25, 50% of
baseline

MYlookback_optimal = 40; % is # of days that our optimal CUSUM uses to
look over
MY_h_optimal = 39;
MY_h_56day = 41.9;
MYc1h = 2.7;
MYc2h = 2.61;
MYc3h = 3.38;

% START CUSUM METHOD - "Sub-OPTIMAL FOR SCENARIO" day
lookback__
k = sigma/2;
cusum = 0;
runLengthCounter = 0;
TFS(1) = 0 ;

lookBack = MYlookback_optimal; % (cusum Optimal)
h = MY_h_optimal; % (cusum Optimal)
alarmCount = 0;

for (durationIndex=1:1:7)

for(dummy=1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:(lookBack + 1))
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % Seasonal
mean of the process
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(j,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;

 102

 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(j,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(j,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(j,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(j,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(j,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(j,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation
on day "hospCountsDay"
end

hospCountsDay = lookBack + 2;

while (cusum < h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;

 103

 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

if (hospCountsDay > 100 && hospCountsDay
<=(100+(duration(durationIndex)+1)/2))
 outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2);
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) &&
hospCountsDay < (100+duration(durationIndex)))
 outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2);
else
 outbreak=0;
end

hospCounts(hospCountsDay) = max(0,ceil(meanie + dayeffect + rand_var +
outbreak));

matX1 = [ones(lookBack,1) (1:1:lookBack)'];
matX2 = zeros(lookBack,6);
for i=1:lookBack;
 columnX2=mod(hospCountsDay-i,7)+1;
 if(columnX2<7)
 matX2(lookBack+1-i,columnX2)=1;
 end;
end;
matX =[matX1 matX2];

countLookBack = [hospCounts((hospCountsDay-lookBack):1:(hospCountsDay-
1))];
b = regress(countLookBack', matX);

daysInd=[0, 0, 0, 0, 0, 0];
columnInd=mod(hospCountsDay,7)+1;
if(columnInd<7)
 daysInd(columnInd)=1;
end;

tomorrowCount = [1 (lookBack+1) daysInd]; % 1 for intercept, (lookBack +
1) for tomorrow's day #

 104

predCount(hospCountsDay) = tomorrowCount*b; %it's like you're predicting
the mean of the process
residual(hospCountsDay) = hospCounts(hospCountsDay) -
predCount(hospCountsDay);

cusum = max(0, (residual(hospCountsDay) - k + cusum));

if (hospCountsDay <= 100 && cusum >= h)
 cusum=0; % False alarm. Don't signal.
elseif (hospCountsDay > 100)
 runLengthCounter = runLengthCounter + 1;
end

hospCountsDay = hospCountsDay + 1;
end % end while (cusum < h) loop. An alarm has occurred.

alarmCount = alarmCount + 1;

TFSallCusumOpt(alarmCount) = runLengthCounter;

if (runLengthCounter <= duration(durationIndex))
 TFScusumOpt(alarmCount) = runLengthCounter;
else
 TFScusumOpt(alarmCount) = -99; %did not catch outbreak by its end
end

runLengthCounter = 0; % after "alarm", reset runLengthCounter and cusum
cusum = 0;
end % end dummy for-loop

alarmCount=0; % reset previous alarmCount, reset runningSum stuff
runningSumTFS=0;
runningSumTFSCounter=0;
runningSumTFSall=0;
runningSqdSumTFScusumOpt = 0;

for (dummy2 = 1:1:numLoops)
 if (TFScusumOpt(dummy2) > 0)
 runningSumTFS = runningSumTFS + TFScusumOpt(dummy2); %only
adding positive TFS values
 runningSumTFSCounter = runningSumTFSCounter + 1; %number of on-
time signals
 end % end if TFS(dummy2)>0
runningSumTFSall = runningSumTFSall + TFSallCusumOpt(dummy2);
end % end dummy2 for-loop

averageTFScusumOpt(durationIndex) = runningSumTFS/runningSumTFSCounter;

for (dummy23 = 1:1:numLoops)
 if (TFScusumOpt(dummy23) > 0)
 runningSqdSumTFScusumOpt = runningSqdSumTFScusumOpt +
(averageTFScusumOpt(durationIndex) - TFScusumOpt(dummy23))^2;
 end

 105

end
seAverageTFScusumOpt(durationIndex) =
(sqrt(runningSqdSumTFScusumOpt/(runningSumTFSCounter -
1)))/sqrt(runningSumTFSCounter);

averageTFSallCusumOpt(durationIndex) = runningSumTFSall/numLoops; %
numLoops = # total alarms
fractionMissedcusumOpt(durationIndex) = (numLoops -
runningSumTFSCounter)/numLoops;

end % end durationIndex for-loop

% START CUSUM METHOD - 8 week (56 day)
lookback__
k = sigma/2;
h = MY_h_56day; % (cusum 56 day)
lookBack = 56;
cusum = 0;
alarmCount = 0;
runLengthCounter = 0;

for (durationIndex=1:1:7)

for(dummy=1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:(lookBack + 1))
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(j,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(j,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(j,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(j,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(j,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end

 106

 elseif (mod(j,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(j,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation
on day "hospCountsDay"
end

hospCountsDay = lookBack + 2;

while (cusum < h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 107

if (hospCountsDay > 100 && hospCountsDay
<=(100+(duration(durationIndex)+1)/2))
 outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2);
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) &&
hospCountsDay < (100+duration(durationIndex)))
 outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2);
else
 outbreak=0;
end

hospCounts(hospCountsDay) = max(0,ceil(meanie + dayeffect + rand_var +
outbreak));

matX1 = [ones(lookBack,1) (1:1:lookBack)'];
matX2 = zeros(lookBack,6);
for i=1:lookBack;
 columnX2=mod(hospCountsDay-i,7)+1;
 if(columnX2<7)
 matX2(lookBack+1-i,columnX2)=1;
 end;
end;
matX =[matX1 matX2];

countLookBack = [hospCounts((hospCountsDay-lookBack):1:(hospCountsDay-
1))];
b = regress(countLookBack', matX);

daysInd=[0, 0, 0, 0, 0, 0];
columnInd=mod(hospCountsDay,7)+1;
if(columnInd<7)
 daysInd(columnInd)=1;
end;

tomorrowCount = [1 (lookBack+1) daysInd]; % 1 for intercept, (lookBack +
1) for tomorrow's day #
predCount(hospCountsDay) = tomorrowCount*b; %it's like you're predicting
the mean of the process
residual(hospCountsDay) = hospCounts(hospCountsDay) -
predCount(hospCountsDay);

cusum = max(0, (residual(hospCountsDay) - k + cusum));

if (hospCountsDay <= 100 && cusum >= h)
 cusum=0;
elseif (hospCountsDay > 100)
 runLengthCounter = runLengthCounter + 1;
end

hospCountsDay = hospCountsDay + 1;
end % end while (cusum < h) loop. An alarm has occurred.

 108

alarmCount = alarmCount + 1;
TFSallCusum56(alarmCount) = runLengthCounter;

if (runLengthCounter <= duration(durationIndex))
 TFScusum56(alarmCount) = runLengthCounter;
else
 TFScusum56(alarmCount) = -99; %did not catch outbreak by its end
end

%TFS(alarmCount);
runLengthCounter = 0; % after "alarm", reset runLengthCounter and cusum
cusum = 0;
end % end dummy for-loop

alarmCount=0; % reset previous alarmCount, reset runningSum stuff
runningSumTFS=0;
runningSumTFSCounter=0;
runningSumTFSall=0;
runningSqdSumTFScusum56 = 0;

for (dummy2 = 1:1:numLoops)
 if (TFScusum56(dummy2) > 0)
 runningSumTFS = runningSumTFS + TFScusum56(dummy2); %only adding
positive TFS values
 runningSumTFSCounter = runningSumTFSCounter + 1;
 end % end if TFS(dummy2)>0
runningSumTFSall = runningSumTFSall + TFSallCusum56(dummy2);
end % end dummy2 for-loop

averageTFScusum56(durationIndex) = runningSumTFS/runningSumTFSCounter;

for (dummy23 = 1:1:numLoops)
 if (TFScusum56(dummy23) > 0)
 runningSqdSumTFScusum56 = runningSqdSumTFScusum56 +
(averageTFScusum56(durationIndex) - TFScusum56(dummy23))^2;
 end
end
seAverageTFScusum56(durationIndex) =
(sqrt(runningSqdSumTFScusum56/(runningSumTFSCounter -
1)))/sqrt(runningSumTFSCounter);

averageTFSallCusum56(durationIndex) = runningSumTFSall/numLoops;
fractionMissedcusum56(durationIndex) = (numLoops -
runningSumTFSCounter)/numLoops;

end % end durationIndex for-loop

%START C1
METHOD___
sdMovingAvg = 999999; %this will be reset before it is used (SD required
to be > 0 near line 330)

for (durationIndex=1:1:7)

 109

runningSumTFSc1=0;
runningSumTFSCounterc1=0;

alarmCountC1 = 0;
runLengthCounterC1 = 0;
TFSc1(1)=0;
c1h = MYc1h;
c1Statistic = 0;

for (dummy = 1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:7)
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7
 if (j==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (j==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (j==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (j==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation
on day "hospCountsDay"
end

hospCountsDay = 8;

 110

while (c1Statistic < c1h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

if (hospCountsDay > 100 && hospCountsDay
<=(100+(duration(durationIndex)+1)/2))
 outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2);
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) &&
hospCountsDay < (100+duration(durationIndex)))
 outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2);
else
 outbreak=0;
end

hospCounts(hospCountsDay) = max(0,ceil(meanie + dayeffect + rand_var +
outbreak));

 111

movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-7) +
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) +
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3) +
hospCounts(hospCountsDay-2) + hospCounts(hospCountsDay-1))/7;

if (length(movingAvg) >= 14) %need 7 (nonzero) values for an average
 if (sdMovingAvg > 0)
 oldsdMovingAvg = sdMovingAvg;
 end
 sdMovingAvg = ((((hospCounts(hospCountsDay-7) -
movingAvg(hospCountsDay-7))^2) + ((hospCounts(hospCountsDay-6) -
movingAvg(hospCountsDay-6))^2) + ((hospCounts(hospCountsDay-5) -
movingAvg(hospCountsDay-5))^2) + ((hospCounts(hospCountsDay-4) -
movingAvg(hospCountsDay-4))^2) + ((hospCounts(hospCountsDay-3) -
movingAvg(hospCountsDay-3))^2) + ((hospCounts(hospCountsDay-2) -
movingAvg(hospCountsDay-2))^2) + ((hospCounts(hospCountsDay-1) -
movingAvg(hospCountsDay-1))^2))/6)^0.5;
 if (sdMovingAvg==0)
 sdMovingAvg = oldsdMovingAvg;
 end
 c1Statistic = (hospCounts(hospCountsDay) -
movingAvg(hospCountsDay))/sdMovingAvg;
 if (hospCountsDay <= 100 && c1Statistic >= c1h)
 c1Statistic=0;
 elseif (hospCountsDay > 100)
 runLengthCounterC1 = runLengthCounterC1 + 1;
 end
end

hospCountsDay = hospCountsDay + 1;
end % end while (c1Statistic < c1h) loop, an alarm has occurred

alarmCountC1 = alarmCountC1 + 1;
TFSallC1(alarmCountC1) = runLengthCounterC1;

if (runLengthCounterC1 <= duration(durationIndex))
 TFSc1(alarmCountC1) = runLengthCounterC1;
else
 TFSc1(alarmCountC1) = -99; %did not catch outbreak by its end
end

runLengthCounterC1 = 0; % after "alarm", reset runLengthCounter and
cusum
c1Statistic=0;

end % dummy's for loop

alarmCountC1=0; % reset previous alarmCount, reset runningSum stuff
runningSumTFSc1=0;
runningSumTFSCounterc1=0;
runningSumTFSall=0;
runningSqdSumTFSc1 = 0;

for (dummy2 = 1:1:numLoops)

 112

 if (TFSc1(dummy2) > 0)
 runningSumTFSc1 = runningSumTFSc1 + TFSc1(dummy2);
 runningSumTFSCounterc1 = runningSumTFSCounterc1 + 1;
 end
runningSumTFSall = runningSumTFSall + TFSallC1(dummy2);
end

averageTFSc1(durationIndex) = runningSumTFSc1/runningSumTFSCounterc1;

for (dummy23 = 1:1:numLoops)
 if (TFSc1(dummy23) > 0)
 runningSqdSumTFSc1 = (averageTFSc1(durationIndex) -
TFSc1(dummy23))^2;
 end
end
seAverageTFSc1(durationIndex) =
(sqrt(runningSqdSumTFSc1/(runningSumTFSCounterc1 -
1)))/sqrt(runningSumTFSCounterc1);

averageTFSallC1(durationIndex) = runningSumTFSall/numLoops;
fractionMissedc1(durationIndex) = (numLoops -
runningSumTFSCounterc1)/numLoops;

end % end durationIndex for-loop

% START C2 METHOD__
sdMovingAvg = 999999;
for (durationIndex=1:1:7)
runningSumTFSc2=0;
runningSumTFSCounterc2=0;
runningSumTFSc3=0;
runningSumTFSCounterc3=0;

alarmCountC2 = 0;
alarmCountC3 = 0;
runLengthCounterC2 = 0;
runLengthCounterC3 = 0;
TFSc2(1) = 0;
TFSc3(1) = 0;
c2h = MYc2h;
c3h = MYc3h;
c2Statistic = 0;
c2StatTodayMinus2 = 0;
c2StatTodayMinus1 = 0;
c2StatToday = 0;
c3Statistic = 0;

for (dummy = 1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:9)
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts

 113

%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7
 if (j==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (j==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (j==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (j==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 elseif (j==8)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==9)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+rand_var+dayeffect)); % an observation
on day "hospCountsDay"
end

hospCountsDay = 10;

while (c2Statistic < c2h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end

 114

 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

if (hospCountsDay > 100 && hospCountsDay
<=(100+(duration(durationIndex)+1)/2))
 outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2);
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) &&
hospCountsDay < (100+duration(durationIndex)))
 outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2);
else
 outbreak=0;
end

hospCounts(hospCountsDay)=max(0,ceil(meanie+dayeffect+rand_var+outbreak)
);
movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) +
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) +
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) +
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7;

if (length(movingAvg) >= 16) %need 7 (16-9) days for an average
 if (sdMovingAvg > 0)
 oldsdMovingAvg = sdMovingAvg;
 end

 115

sdMovingAvg = ((((hospCounts(hospCountsDay-9) - movingAvg(hospCountsDay-
9))^2) + ((hospCounts(hospCountsDay-8) - movingAvg(hospCountsDay-8))^2)
+ ((hospCounts(hospCountsDay-7) - movingAvg(hospCountsDay-7))^2) +
((hospCounts(hospCountsDay-6) - movingAvg(hospCountsDay-6))^2) +
((hospCounts(hospCountsDay-5) - movingAvg(hospCountsDay-5))^2) +
((hospCounts(hospCountsDay-4) - movingAvg(hospCountsDay-4))^2) +
((hospCounts(hospCountsDay-3) - movingAvg(hospCountsDay-3))^2))/6)^0.5;
 if (sdMovingAvg == 0)
 sdMovingAvg = oldsdMovingAvg;
 end
c2Statistic = (hospCounts(hospCountsDay) -
movingAvg(hospCountsDay))/sdMovingAvg;
c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one day old
right now
c2StatTodayMinus1 = c2StatToday;
c2StatToday = c2Statistic;

 if (hospCountsDay <= 100 && c2Statistic >= c2h)
 c2Statistic=0;
 elseif (hospCountsDay > 100)
 runLengthCounterC2 = runLengthCounterC2 + 1;
 end
end

hospCountsDay = hospCountsDay + 1;
end % end while (c2Statistic < c2h) loop, an alarm in C2 has occurred

alarmCountC2 = alarmCountC2 + 1;
TFSallC2(alarmCountC2) = runLengthCounterC2;

if (runLengthCounterC2 <= duration(durationIndex))
 TFSc2(alarmCountC2) = runLengthCounterC2;
else
 TFSc2(alarmCountC2) = -99; %did not catch outbreak by its end
end

runLengthCounterC2 = 0; % after "alarm", reset runLengthCounter and
cusum
c2Statistic=0;

end % dummy's for loop

alarmCountC2=0; % reset previous alarmCount, reset runningSum stuff
runningSumTFSc2=0;
runningSumTFSCounterc2=0;
runningSumTFSallC2=0;

for (dummy2 = 1:1:numLoops)
 if (TFSc2(dummy2) > 0)
 runningSumTFSc2 = runningSumTFSc2 + TFSc2(dummy2);
 runningSumTFSCounterc2 = runningSumTFSCounterc2 + 1;
 end
runningSumTFSallC2 = runningSumTFSallC2 + TFSallC2(dummy2);
end

 116

averageTFSc2(durationIndex) = runningSumTFSc2/runningSumTFSCounterc2;

for (dummy1 = 1:1:numLoops)
 if (TFSc2(dummy1) > 0)
 runningSqdSumTFSc2 = (averageTFSc2(durationIndex) -
TFSc2(dummy1))^2;
 end
end
seAverageTFSc2(durationIndex) =
(sqrt(runningSqdSumTFSc2/(runningSumTFSCounterc2 -
1)))/sqrt(runningSumTFSCounterc2);

averageTFSallC2(durationIndex) = runningSumTFSallC2/numLoops;
fractionMissedc2(durationIndex) = (numLoops -
runningSumTFSCounterc2)/numLoops;

end % end durationIndex for-loop

TFSc2;
TFSallC2;
averageTFSc2
seAverageTFSc2 % for the given true signal
fractionMissedc2
averageTFSallC2

% START C3 METHOD__
for (durationIndex=1:1:7)
% runningSumTFSc2=0;
% runningSumTFSCounterc2=0;
runningSumTFSc3=0;
runningSumTFSCounterc3=0;

% alarmCountC2 = 0;
alarmCountC3 = 0;
% runLengthCounterC2 = 0;
runLengthCounterC3 = 0;
% TFSc2(1) = 0;
TFSc3(1) = 0;
% c2h = MYc2h;
c3h = MYc3h;
c2Statistic = 0;
c2StatTodayMinus2 = 0;
c2StatTodayMinus1 = 0;
c2StatToday = 0;
c3Statistic = 0;

for (dummy = 1:1:numLoops)
randStartDay = ceil(rand*365);

for (j = 1:1:9)
meanie=amplitude*(sin(2*pi*(j+randStartDay)/365))+ baseline; % This is
the seasonal mean of the process
rand_var=randn*sigma; % For large counts

 117

%rand_var=lognrnd(1.0,sigma); % For small counts

 %day effect: Monday=1 through Sunday=7
 if (j==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (j==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (j==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (j==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (j==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 elseif (j==8)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end
 elseif (j==9)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 end

hospCounts(j)=max(0,ceil(meanie+dayeffect+rand_var)); % an observation
on day "hospCountsDay"
end

hospCountsDay = 10;

while (c3Statistic < c3h)

 %day effect: Monday=1 through Sunday=7 (in mod calcs)
 if (mod(hospCountsDay,7)+1==1)
 if (sigma>1) dayeffect= (0.1)*sigma;
 else dayeffect= (0.1)*sigmaZ;
 end

 118

 elseif (mod(hospCountsDay,7)+1==2)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==3)
 if (sigma>1) dayeffect= (0.3)*sigma;
 else dayeffect= (0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==4)
 if (sigma>1) dayeffect= (0.2)*sigma;
 else dayeffect= (0.2)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==5)
 if (sigma>1) dayeffect= (0.0)*sigma;
 else dayeffect= (0.0)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==6)
 if (sigma>1) dayeffect= (-0.3)*sigma;
 else dayeffect= (-0.3)*sigmaZ;
 end
 elseif (mod(hospCountsDay,7)+1==7)
 if (sigma>1) dayeffect= (-0.5)*sigma;
 else dayeffect= (-0.5)*sigmaZ;
 end
 end

meanie=amplitude*(sin(2*pi*(randStartDay+hospCountsDay)/365))+ baseline;
rand_var=randn*sigma; % For large counts
%rand_var=lognrnd(1.0,sigma); % For small counts

if (hospCountsDay > 100 && hospCountsDay
<=(100+(duration(durationIndex)+1)/2))
 outbreak =(hospCountsDay-
100)*magnitude/((duration(durationIndex)+1)/2);
elseif (hospCountsDay > (100+(duration(durationIndex)+1)/2) &&
hospCountsDay < (100+duration(durationIndex)))
 outbreak = magnitude - (hospCountsDay-100-
((duration(durationIndex)+1)/2))*magnitude/((duration(durationIndex)+1)/
2);
else
 outbreak=0;
end

hospCounts(hospCountsDay) =
max(0,ceil(meanie+dayeffect+rand_var+outbreak));
movingAvg(hospCountsDay) = (hospCounts(hospCountsDay-9) +
hospCounts(hospCountsDay-8) + hospCounts(hospCountsDay-7) +
hospCounts(hospCountsDay-6) + hospCounts(hospCountsDay-5) +
hospCounts(hospCountsDay-4) + hospCounts(hospCountsDay-3))/7;

if (length(movingAvg) >= 16) %need 7 (16-9) days for an average
 if (sdMovingAvg > 0)
 oldsdMovingAvg = sdMovingAvg;
 end

 119

sdMovingAvg = ((((hospCounts(hospCountsDay-9) - movingAvg(hospCountsDay-
9))^2) + ((hospCounts(hospCountsDay-8) - movingAvg(hospCountsDay-8))^2)
+ ((hospCounts(hospCountsDay-7) - movingAvg(hospCountsDay-7))^2) +
((hospCounts(hospCountsDay-6) - movingAvg(hospCountsDay-6))^2) +
((hospCounts(hospCountsDay-5) - movingAvg(hospCountsDay-5))^2) +
((hospCounts(hospCountsDay-4) - movingAvg(hospCountsDay-4))^2) +
((hospCounts(hospCountsDay-3) - movingAvg(hospCountsDay-3))^2))/6)^0.5;
 if (sdMovingAvg == 0)
 sdMovingAvg = oldsdMovingAvg;
 end
c2Statistic = (hospCounts(hospCountsDay) -
movingAvg(hospCountsDay))/sdMovingAvg;
c2StatTodayMinus2 = c2StatTodayMinus1; % values on right are one day old
right now
c2StatTodayMinus1 = c2StatToday;
c2StatToday = c2Statistic;
end

if (length(movingAvg) >= 19) %need 3 C2 values for C3 (and all 3 c2Stat
values are != 0)
c3Statistic = max(0, (c2StatToday) - 1) + max(0, (c2StatTodayMinus1) -
1) + max(0, (c2StatTodayMinus2) - 1);
 if (hospCountsDay <= 100 && c3Statistic >= c3h)
 c3Statistic = 0;
 elseif (hospCountsDay > 100)
 runLengthCounterC3 = runLengthCounterC3 + 1;
 end
end

hospCountsDay = hospCountsDay + 1;
end % end while (c3Statistic < c3h) loop, an alarm in C2 has occurred

alarmCountC3 = alarmCountC3 + 1;
TFSallC3(alarmCountC3) = runLengthCounterC3;

if (runLengthCounterC3 <= duration(durationIndex))
 TFSc3(alarmCountC3) = runLengthCounterC3;
else
 TFSc3(alarmCountC3) = -99; %did not catch outbreak by its end
end

runLengthCounterC3 = 0; % after "alarm", reset runLengthCounter and
cusum
c3Statistic=0;

end % dummy's for loop, you have all your alarms in C3

alarmCountC3=0;

runningSumTFSc3=0;
runningSumTFSCounterc3=0;
runningSumTFSallC3=0;

for (dummy3 = 1:1:length(TFSc3))

 120

 if (TFSc3(dummy3) > 0)
 runningSumTFSc3 = runningSumTFSc3 + TFSc3(dummy3);
 runningSumTFSCounterc3 = runningSumTFSCounterc3 + 1;
 end
runningSumTFSallC3 = runningSumTFSallC3 + TFSallC3(dummy3);
end

averageTFSc3(durationIndex) = runningSumTFSc3/runningSumTFSCounterc3;

for (dummy23 = 1:1:length(TFSc3))
 if (TFSc3(dummy23) > 0)
 runningSqdSumTFSc3 = (averageTFSc3(durationIndex) -
TFSc3(dummy23))^2;
 end
end
seAverageTFSc3(durationIndex) =
(sqrt(runningSqdSumTFSc3/(runningSumTFSCounterc3 -
1)))/sqrt(runningSumTFSCounterc3);

averageTFSallC3(durationIndex) = runningSumTFSallC3/numLoops;
fractionMissedc3(durationIndex) = (numLoops -
runningSumTFSCounterc3)/numLoops;

end % end durationIndex for-loop

% OUTPUT--

averageTFScusumOpt
seAverageTFScusumOpt
fractionMissedcusumOpt
averageTFSallCusumOpt

averageTFScusum56
seAverageTFScusum56
fractionMissedcusum56
averageTFSallCusum56

averageTFSc1
seAverageTFSc1
fractionMissedc1
averageTFSallC1

averageTFSc2
seAverageTFSc2 % for the given true signal
fractionMissedc2
averageTFSallC2

averageTFSc3
seAverageTFSc3 % for the given true signal
fractionMissedc3
averageTFSallC3

 121

%SAVING COMMANDS (vectors saved together as a MATLAB file, and all are
loaded into workspace upon opening the file)
save(['scenario_' num2str(scenarioNumber) '_data'],
'averageTFScusumOpt',...
'seAverageTFScusumOpt', 'fractionMissedcusumOpt',
'averageTFSallCusumOpt',...
'averageTFScusum56', 'seAverageTFScusum56', 'fractionMissedcusum56',
'averageTFSallCusum56',...
'averageTFSc1', 'seAverageTFSc1', 'fractionMissedc1',
'averageTFSallC1',...
'averageTFSc2', 'seAverageTFSc2', 'fractionMissedc2',
'averageTFSallC2',...
'averageTFSc3', 'seAverageTFSc3', 'fractionMissedc3',
'averageTFSallC3');

%PLOTTING COMMANDS

plotATFSgivenTrueSignal = figure('Name','ATFS Given True
Signal','NumberTitle','off');
plot(duration, averageTFScusumOpt, '-*k', duration, averageTFScusum56,
'-ok', duration, averageTFSc1, '--xk', duration, averageTFSc2, ':+k',
duration, averageTFSc3, '-.vk');
title({'Plot of ATFS Given True Signal'; ['Scenario: '
num2str(scenarioNumber)]});
xlabel('Outbreak Duration');
ylabel('Average TFS | True Signal');
set(gca, 'Xtick', 3:2:15)
axis('tight')
legend('CUSUM (40)', 'CUSUM (56)', 'C1','C2', 'C3', 'Location',
'NorthWest')
%axis([xmin, xmax, ymin, ymax])
axis([3, 15, 0, 8])
saveas(plotATFSgivenTrueSignal,['H:\THESIScode\FinalOutputAndPlots\plotA
TFSgivenTrueSignal_S' num2str(scenarioNumber) '.fig']);

plotFractionMissed = figure('Name','Fraction
Missed','NumberTitle','off');
plot(duration, fractionMissedcusumOpt, '-*k', duration,
fractionMissedcusum56, '-ok', duration, fractionMissedc1, '--xk',
duration, fractionMissedc2, ':+k', duration, fractionMissedc3, '-.vk');
title({'Plot of Fraction Missed'; ['Scenario: '
num2str(scenarioNumber)]});
xlabel('Outbreak Duration');
ylabel('Fraction Missed');
set(gca, 'Xtick', 3:2:15)
axis('tight')
legend('CUSUM (40)', 'CUSUM (56)', 'C1','C2', 'C3', 'Location',
'SouthWest')
axis([3, 15, 0, 1])
saveas(plotFractionMissed,['H:\THESIScode\FinalOutputAndPlots\plotFracti
onMissed_S' num2str(scenarioNumber) '.fig']);

 122

THIS PAGE INTENTIONALLY LEFT BLANK

 123

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, VA

2. Dudley Knox Library
Naval Postgraduate School
Monterey, CA

3. Associate Professor R.D. Fricker, Jr.
Naval Postgraduate School
Monterey, CA

4. Chairman David Olwell
Naval Postgraduate School
Monterey, CA

5. Professor Annette Neu
Naval Postgraduate School
Monterey, CA

6. Professor Ellen Gordon
Naval Postgraduate School
Monterey, CA

7. Dr. Jerome Tokars
Centers for Disease Control and Prevention
Atlanta, GA

8. Dr. Henry Rolka
Centers for Disease Control and Prevention
Atlanta, GA

9. Ms. Lori Hutwagner
Centers for Disease Control and Prevention
Atlanta, GA

10. Ms. Heather Issvoran
Naval Postgraduate School
Monterey, CA

